Spaces:
Sleeping
Sleeping
import json | |
import numpy as np | |
import joblib | |
from fastapi import FastAPI, HTTPException | |
from pydantic import BaseModel | |
import uvicorn | |
import streamlit as st | |
# Load model from the local storage (ensure the model file is in the same directory) | |
model_path = "model.pkl" | |
gb_model_loaded = joblib.load(model_path) | |
# Create FastAPI app | |
app = FastAPI() | |
# Set the title of the app | |
st.title("Medical Prediction Model") | |
# Instruction text | |
st.write("Enter 32 features for prediction:") | |
# Create 32 input fields for user input | |
inputs = [] | |
for i in range(32): | |
value = st.number_input(f"Feature {i + 1}", min_value=0, step=1) | |
inputs.append(value) | |
# Button to make prediction | |
if st.button("Predict"): | |
# Prepare the data for the request | |
input_data = {"features": inputs} | |
# Set the URL for your Hugging Face Space | |
url = "https://phoner45-mediguide-api.hf.space/predict" # Replace with your actual Space URL | |
# Make a POST request | |
response = requests.post(url, json=inputs) | |
# Check the response status code | |
if response.status_code == 200: | |
# Get the JSON response | |
prediction = response.json() | |
# Display the prediction results | |
st.success("Prediction Results:") | |
st.json(prediction) | |
else: | |
st.error(f"Error: {response.status_code} - {response.text}") | |
# Define class labels | |
class_names = [ | |
'Emergency & Accident Unit', 'Heart Clinic', | |
'Neuro Med Center', 'OPD:EYE', 'Dental', | |
'OPD:MED', 'OPD:ENT', 'OPD:OBG', | |
'OPD:Surgery + Uro.', 'Orthopedic Surgery', | |
'GI Clinic', 'Breast Clinic', 'Skin & Dermatology' | |
] | |
# Define the input format for FastAPI using Pydantic BaseModel | |
class InputData(BaseModel): | |
features: list[float] # List of 32 feature inputs | |
def predict(data: InputData): | |
try: | |
# Validate input length | |
if len(data.features) != 32: | |
raise HTTPException(status_code=400, detail=f"Expected 32 features, but got {len(data.features)}") | |
# Convert list to numpy array and reshape | |
input_array = np.array(data.features).reshape(1, -1) | |
# Get predictions | |
prediction = gb_model_loaded.predict_proba(input_array) | |
# Convert probabilities to percentage and format | |
probabilities = (prediction[0] * 100).round(2) | |
result_pro = {class_name: f"{prob:.2f}%" for class_name, prob in zip(class_names, probabilities)} | |
# Return result as JSON | |
return {'result': result_pro} | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=str(e)) | |
# Run the application with the following command if needed | |
# if __name__ == "__main__": | |
# uvicorn.run(app, host="0.0.0.0", port=8501) | |