mediguide-api / app.py
phoner45's picture
Update app.py
b78c3b6 verified
raw
history blame
2.73 kB
import json
import numpy as np
import joblib
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
import uvicorn
import streamlit as st
# Load model from the local storage (ensure the model file is in the same directory)
model_path = "model.pkl"
gb_model_loaded = joblib.load(model_path)
# Create FastAPI app
app = FastAPI()
# Set the title of the app
st.title("Medical Prediction Model")
# Instruction text
st.write("Enter 32 features for prediction:")
# Create 32 input fields for user input
inputs = []
for i in range(32):
value = st.number_input(f"Feature {i + 1}", min_value=0, step=1)
inputs.append(value)
# Button to make prediction
if st.button("Predict"):
# Prepare the data for the request
input_data = {"features": inputs}
# Set the URL for your Hugging Face Space
url = "https://phoner45-mediguide-api.hf.space/predict" # Replace with your actual Space URL
# Make a POST request
response = requests.post(url, json=inputs)
# Check the response status code
if response.status_code == 200:
# Get the JSON response
prediction = response.json()
# Display the prediction results
st.success("Prediction Results:")
st.json(prediction)
else:
st.error(f"Error: {response.status_code} - {response.text}")
# Define class labels
class_names = [
'Emergency & Accident Unit', 'Heart Clinic',
'Neuro Med Center', 'OPD:EYE', 'Dental',
'OPD:MED', 'OPD:ENT', 'OPD:OBG',
'OPD:Surgery + Uro.', 'Orthopedic Surgery',
'GI Clinic', 'Breast Clinic', 'Skin & Dermatology'
]
# Define the input format for FastAPI using Pydantic BaseModel
class InputData(BaseModel):
features: list[float] # List of 32 feature inputs
@app.post("/predict")
def predict(data: InputData):
try:
# Validate input length
if len(data.features) != 32:
raise HTTPException(status_code=400, detail=f"Expected 32 features, but got {len(data.features)}")
# Convert list to numpy array and reshape
input_array = np.array(data.features).reshape(1, -1)
# Get predictions
prediction = gb_model_loaded.predict_proba(input_array)
# Convert probabilities to percentage and format
probabilities = (prediction[0] * 100).round(2)
result_pro = {class_name: f"{prob:.2f}%" for class_name, prob in zip(class_names, probabilities)}
# Return result as JSON
return {'result': result_pro}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
# Run the application with the following command if needed
# if __name__ == "__main__":
# uvicorn.run(app, host="0.0.0.0", port=8501)