Sandiago21's picture
Upload folder using huggingface_hub
a5c0365
import torch
import gradio as gr
from transformers import pipeline
model_id = "Sandiago21/whisper-large-v2-german-2" # update with your model id
pipe = pipeline("automatic-speech-recognition", model=model_id)
title = "Automatic Speech Recognition (ASR)"
description = """
Demo for automatic speech recognition in German. Demo uses [Sandiago21/whisper-large-v2-german-2](https://huggingface.co/Sandiago21/whisper-large-v2-german-2) checkpoint, which is based on OpenAI's
[Whisper](https://huggingface.co/openai/whisper-large-v2) model and is fine-tuned in German Audio dataset
![Automatic Speech Recognition (ASR)"](https://datasets-server.huggingface.co/assets/huggingface-course/audio-course-images/--/huggingface-course--audio-course-images/train/2/image/image.png "Diagram of Automatic Speech Recognition (ASR)")
"""
def transcribe_speech(filepath):
output = pipe(
filepath,
max_new_tokens=256,
generate_kwargs={
"task": "transcribe",
"language": "german",
}, # update with the language you've fine-tuned on
chunk_length_s=30,
batch_size=8,
)
return output["text"]
demo = gr.Blocks()
mic_transcribe = gr.Interface(
fn=transcribe_speech,
inputs=gr.Audio(source="microphone", type="filepath"),
outputs=gr.outputs.Textbox(),
tilte=title,
description=description,
)
file_transcribe = gr.Interface(
fn=transcribe_speech,
inputs=gr.Audio(source="upload", type="filepath"),
outputs=gr.outputs.Textbox(),
examples=[["./example.wav"]],
tilte=title,
description=description,
)
with demo:
gr.TabbedInterface(
[mic_transcribe, file_transcribe],
["Transcribe Microphone", "Transcribe Audio File"],
),
demo.launch()