Sandiago21 commited on
Commit
8b17ca6
·
1 Parent(s): 2e2f394

Upload folder using huggingface_hub

Browse files
Files changed (5) hide show
  1. README.md +3 -9
  2. app.py +168 -0
  3. example.wav +0 -0
  4. example_in_greek.wav +0 -0
  5. requirements.txt +6 -0
README.md CHANGED
@@ -1,12 +1,6 @@
1
  ---
2
- title: Speech To Speech Translation German 2
3
- emoji: 📊
4
- colorFrom: green
5
- colorTo: blue
6
- sdk: gradio
7
- sdk_version: 3.39.0
8
  app_file: app.py
9
- pinned: false
 
10
  ---
11
-
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
  ---
2
+ title: speech-to-speech-translation-german-2
 
 
 
 
 
3
  app_file: app.py
4
+ sdk: gradio
5
+ sdk_version: 3.36.0
6
  ---
 
 
app.py ADDED
@@ -0,0 +1,168 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import numpy as np
3
+ import torch
4
+ from datasets import load_dataset
5
+ from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
6
+
7
+
8
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
9
+
10
+ # load speech translation checkpoint
11
+ asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-large-v2", device=device)
12
+ german_translation_pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-en-de")
13
+
14
+ # load text-to-speech checkpoint and speaker embeddings
15
+ model_id = "microsoft/speecht5_tts" # update with your model id
16
+ # pipe = pipeline("automatic-speech-recognition", model=model_id)
17
+ model = SpeechT5ForTextToSpeech.from_pretrained(model_id)
18
+ vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
19
+ embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
20
+ speaker_embeddings = torch.tensor(embeddings_dataset[7440]["xvector"]).unsqueeze(0)
21
+
22
+ processor = SpeechT5Processor.from_pretrained(model_id)
23
+
24
+ model_id_german = "Sandiago21/speecht5_finetuned_mozilla_foundation_common_voice_13_german"
25
+ model_german = SpeechT5ForTextToSpeech.from_pretrained(model_id_german)
26
+ processor_german = SpeechT5Processor.from_pretrained(model_id_german)
27
+
28
+ replacements = [
29
+ ("Ä", "E"),
30
+ ("Æ", "E"),
31
+ ("Ç", "C"),
32
+ ("É", "E"),
33
+ ("Í", "I"),
34
+ ("Ó", "O"),
35
+ ("Ö", "E"),
36
+ ("Ü", "Y"),
37
+ ("ß", "S"),
38
+ ("à", "a"),
39
+ ("á", "a"),
40
+ ("ã", "a"),
41
+ ("ä", "e"),
42
+ ("å", "a"),
43
+ ("ë", "e"),
44
+ ("í", "i"),
45
+ ("ï", "i"),
46
+ ("ð", "o"),
47
+ ("ñ", "n"),
48
+ ("ò", "o"),
49
+ ("ó", "o"),
50
+ ("ô", "o"),
51
+ ("ö", "u"),
52
+ ("ú", "u"),
53
+ ("ü", "y"),
54
+ ("ý", "y"),
55
+ ("Ā", "A"),
56
+ ("ā", "a"),
57
+ ("ă", "a"),
58
+ ("ą", "a"),
59
+ ("ć", "c"),
60
+ ("Č", "C"),
61
+ ("č", "c"),
62
+ ("ď", "d"),
63
+ ("Đ", "D"),
64
+ ("ę", "e"),
65
+ ("ě", "e"),
66
+ ("ğ", "g"),
67
+ ("İ", "I"),
68
+ ("О", "O"),
69
+ ("Ł", "L"),
70
+ ("ń", "n"),
71
+ ("ň", "n"),
72
+ ("Ō", "O"),
73
+ ("ō", "o"),
74
+ ("ő", "o"),
75
+ ("ř", "r"),
76
+ ("Ś", "S"),
77
+ ("ś", "s"),
78
+ ("Ş", "S"),
79
+ ("ş", "s"),
80
+ ("Š", "S"),
81
+ ("š", "s"),
82
+ ("ū", "u"),
83
+ ("ź", "z"),
84
+ ("Ż", "Z"),
85
+ ("Ž", "Z"),
86
+ ("ǐ", "i"),
87
+ ("ǐ", "i"),
88
+ ("ș", "s"),
89
+ ("ț", "t"),
90
+ ]
91
+
92
+ def cleanup_text(text):
93
+ for src, dst in replacements:
94
+ text = text.replace(src, dst)
95
+ return text
96
+
97
+
98
+ def synthesize_speech(text):
99
+ text = cleanup_text(text)
100
+ inputs = processor(text=text, return_tensors="pt")
101
+ speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
102
+
103
+ return gr.Audio.update(value=(16000, speech.cpu().numpy()))
104
+
105
+
106
+ def translate_to_english(audio):
107
+ outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate", "language": "english"})
108
+ return outputs["text"]
109
+
110
+
111
+ def synthesise_from_english(text):
112
+ text = cleanup_text(text)
113
+ inputs = processor(text=text, return_tensors="pt")
114
+ speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
115
+ return speech.cpu().numpy()
116
+
117
+
118
+ def translate_from_english_to_german(text):
119
+ return german_translation_pipe(text)[0]["translation_text"]
120
+
121
+
122
+ def synthesise_from_german(text):
123
+ text = cleanup_text(text)
124
+ inputs = processor_german(text=text, return_tensors="pt")
125
+ speech = model_german.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
126
+ return speech.cpu()
127
+
128
+
129
+ def speech_to_speech_translation(audio):
130
+ translated_text = translate_to_english(audio)
131
+ translated_text = translate_from_english_to_german(translated_text)
132
+ # synthesised_speech = synthesise_from_english(translated_text)
133
+ # translated_text = translate_from_english_to_german(synthesised_speech)
134
+ synthesised_speech = synthesise_from_german(translated_text)
135
+ synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
136
+ return ((16000, synthesised_speech), translated_text)
137
+
138
+
139
+ title = "Cascaded STST"
140
+ description = """
141
+ Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in German. Demo uses OpenAI's [Whisper Large v2](https://huggingface.co/openai/whisper-large-v2) model for speech translation, and [Sandiago21/speecht5_finetuned_google_fleurs_german](https://huggingface.co/Sandiago21/speecht5_finetuned_google_fleurs_german) checkpoint for text-to-speech, which is based on Microsoft's
142
+ [SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech, fine-tuned in German Audio dataset:
143
+ ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
144
+ """
145
+
146
+ demo = gr.Blocks()
147
+
148
+ mic_translate = gr.Interface(
149
+ fn=speech_to_speech_translation,
150
+ inputs=gr.Audio(source="microphone", type="filepath"),
151
+ outputs=[gr.Audio(label="Generated Speech", type="numpy"), gr.outputs.Textbox()],
152
+ title=title,
153
+ description=description,
154
+ )
155
+
156
+ file_translate = gr.Interface(
157
+ fn=speech_to_speech_translation,
158
+ inputs=gr.Audio(source="upload", type="filepath"),
159
+ outputs=[gr.Audio(label="Generated Speech", type="numpy"), gr.outputs.Textbox()],
160
+ examples=[["./example.wav"]],
161
+ title=title,
162
+ description=description,
163
+ )
164
+
165
+ with demo:
166
+ gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
167
+
168
+ demo.launch()
example.wav ADDED
Binary file (247 kB). View file
 
example_in_greek.wav ADDED
Binary file (603 kB). View file
 
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ torch
2
+ git+https://github.com/huggingface/transformers
3
+ datasets
4
+ torchaudio
5
+ sentencepiece
6
+