import gradio as gr import numpy as np import torch from datasets import load_dataset from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline device = "cuda:0" if torch.cuda.is_available() else "cpu" # load speech translation checkpoint asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-large-v2", device=device) # load text-to-speech checkpoint and speaker embeddings model_id = "Sandiago21/speecht5_finetuned_google_fleurs_greek" # update with your model id # pipe = pipeline("automatic-speech-recognition", model=model_id) model = SpeechT5ForTextToSpeech.from_pretrained(model_id) vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") speaker_embeddings = torch.tensor(embeddings_dataset[7440]["xvector"]).unsqueeze(0) processor = SpeechT5Processor.from_pretrained(model_id) replacements = [ ("ου", "u"), ("αυ", "af"), ("ευ", "ef"), ("ει", "i"), ("οι", "i"), ("αι", "e"), ("ού", "u"), ("εί", "i"), ("οί", "i"), ("αί", "e"), ("Ά", "A"), ("Έ", "E"), ("Ή", "H"), ("Ί", "I"), ("Ό", "O"), ("Ύ", "Y"), ("Ώ", "O"), ("ΐ", "i"), ("Α", "A"), ("Β", "B"), ("Γ", "G"), ("Δ", "L"), ("Ε", "Ε"), ("Ζ", "Z"), ("Η", "I"), ("Θ", "Th"), ("Ι", "I"), ("Κ", "K"), ("Λ", "L"), ("Μ", "M"), ("Ν", "N"), ("Ξ", "Ks"), ("Ο", "O"), ("Π", "P"), ("Ρ", "R"), ("Σ", "S"), ("Τ", "T"), ("Υ", "Y"), ("Φ", "F"), ("Χ", "X"), ("Ω", "O"), ("ά", "a"), ("έ", "e"), ("ή", "i"), ("ί", "i"), ("α", "a"), ("β", "v"), ("γ", "g"), ("δ", "d"), ("ε", "e"), ("ζ", "z"), ("η", "i"), ("θ", "th"), ("ι", "i"), ("κ", "k"), ("λ", "l"), ("μ", "m"), ("ν", "n"), ("ξ", "ks"), ("ο", "o"), ("π", "p"), ("ρ", "r"), ("ς", "s"), ("σ", "s"), ("τ", "t"), ("υ", "i"), ("φ", "f"), ("χ", "h"), ("ψ", "ps"), ("ω", "o"), ("ϊ", "i"), ("ϋ", "i"), ("ό", "o"), ("ύ", "i"), ("ώ", "o"), ("í", "i"), ("õ", "o"), ("Ε", "E"), ("Ψ", "Ps"), ] def cleanup_text(text): for src, dst in replacements: text = text.replace(src, dst) return text def synthesize_speech(text): text = cleanup_text(text) inputs = processor(text=text, return_tensors="pt") speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder) return gr.Audio.update(value=(16000, speech.cpu().numpy())) def translate(audio): outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "greek"}) return outputs["text"] def synthesise(text): text = cleanup_text(text) inputs = processor(text=text, return_tensors="pt") speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder) return speech.cpu() def speech_to_speech_translation(audio): translated_text = translate(audio) synthesised_speech = synthesise(translated_text) synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16) return 16000, synthesised_speech title = "Cascaded STST" description = """ Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in Greek. Demo uses OpenAI's [Whisper Large v2](https://huggingface.co/openai/whisper-large-v2) model for speech translation, and [Sandiago21/speecht5_finetuned_google_fleurs_greek](https://huggingface.co/Sandiago21/speecht5_finetuned_google_fleurs_greek) checkpoint for text-to-speech, which is based on Microsoft's [SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech, fine-tuned in Greek Audio dataset: ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation") """ demo = gr.Blocks() mic_translate = gr.Interface( fn=speech_to_speech_translation, inputs=gr.Audio(source="microphone", type="filepath"), outputs=gr.Audio(label="Generated Speech", type="numpy"), title=title, description=description, ) file_translate = gr.Interface( fn=speech_to_speech_translation, inputs=gr.Audio(source="upload", type="filepath"), outputs=gr.Audio(label="Generated Speech", type="numpy"), examples=[["./example.wav"]], title=title, description=description, ) with demo: gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"]) demo.launch()