Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,36 +1,48 @@
|
|
1 |
import streamlit as st
|
2 |
-
from transformers import BertTokenizer, BertForSequenceClassification
|
3 |
import torch
|
|
|
|
|
4 |
|
5 |
# Config class
|
6 |
class Config:
|
7 |
-
|
8 |
-
MODEL_PATH = "
|
|
|
|
|
|
|
9 |
MAX_LEN = 512
|
10 |
-
TOKENIZER = BertTokenizer.from_pretrained(
|
11 |
|
12 |
-
|
|
|
13 |
def __init__(self):
|
14 |
super(FinancialBERT, self).__init__()
|
15 |
-
self.bert = BertForSequenceClassification.from_pretrained(Config.
|
16 |
|
17 |
-
def forward(self, input_ids, attention_mask, labels=None):
|
18 |
-
output = self.bert(input_ids, attention_mask=attention_mask, labels=labels)
|
19 |
return output.loss, output.logits
|
20 |
|
21 |
# Load model
|
22 |
model = FinancialBERT()
|
|
|
23 |
model.eval()
|
24 |
|
25 |
-
#
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
tokenizer = Config.
|
30 |
-
inputs = tokenizer([sentence], return_tensors="pt", truncation=True, padding=True, max_length=Config.MAX_LEN)
|
31 |
with torch.no_grad():
|
32 |
logits = model(**inputs)[1]
|
33 |
probs = torch.nn.functional.softmax(logits, dim=-1)
|
34 |
predictions = torch.argmax(probs, dim=-1)
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
st.write(f"The predicted sentiment is: {sentiment}")
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import BertTokenizer, BertForSequenceClassification, AdamW
|
3 |
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
from torch.utils.data import Dataset, DataLoader
|
6 |
|
7 |
# Config class
|
8 |
class Config:
|
9 |
+
BERT_PATH = "ahmedrachid/FinancialBERT"
|
10 |
+
MODEL_PATH = "model.bin"
|
11 |
+
TRAIN_BATCH_SIZE = 32
|
12 |
+
VALID_BATCH_SIZE = 32
|
13 |
+
EPOCHS = 10
|
14 |
MAX_LEN = 512
|
15 |
+
TOKENIZER = BertTokenizer.from_pretrained(BERT_PATH)
|
16 |
|
17 |
+
# FinancialBERT model class
|
18 |
+
class FinancialBERT(nn.Module):
|
19 |
def __init__(self):
|
20 |
super(FinancialBERT, self).__init__()
|
21 |
+
self.bert = BertForSequenceClassification.from_pretrained(Config.BERT_PATH, num_labels=3, hidden_dropout_prob=0.5)
|
22 |
|
23 |
+
def forward(self, input_ids, attention_mask, token_type_ids=None, labels=None):
|
24 |
+
output = self.bert(input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, labels=labels)
|
25 |
return output.loss, output.logits
|
26 |
|
27 |
# Load model
|
28 |
model = FinancialBERT()
|
29 |
+
model.load_state_dict(torch.load(Config.MODEL_PATH, map_location=torch.device('cpu')))
|
30 |
model.eval()
|
31 |
|
32 |
+
# Tokenizer
|
33 |
+
tokenizer = Config.TOKENIZER
|
34 |
+
|
35 |
+
def predict_sentiment(sentences):
|
36 |
+
inputs = tokenizer(sentences, return_tensors="pt", truncation=True, padding=True, max_length=Config.MAX_LEN)
|
|
|
37 |
with torch.no_grad():
|
38 |
logits = model(**inputs)[1]
|
39 |
probs = torch.nn.functional.softmax(logits, dim=-1)
|
40 |
predictions = torch.argmax(probs, dim=-1)
|
41 |
+
return ['negative', 'neutral', 'positive'][predictions[0].item()]
|
42 |
+
|
43 |
+
# Streamlit app
|
44 |
+
st.title("Financial Sentiment Analysis")
|
45 |
+
sentence = st.text_area("Enter a financial sentence:", "")
|
46 |
+
if st.button("Predict"):
|
47 |
+
sentiment = predict_sentiment([sentence])
|
48 |
st.write(f"The predicted sentiment is: {sentiment}")
|