Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -74,7 +74,7 @@ def predict_model1(image):
|
|
74 |
return formatted_output
|
75 |
|
76 |
# Set your OpenAI API key
|
77 |
-
openai.api_key = "sk-proj-
|
78 |
|
79 |
# Function to encode the image as base64
|
80 |
def encode_image(image_path):
|
@@ -204,9 +204,9 @@ def toggle_model(selected_models,flag):
|
|
204 |
|
205 |
def toggle_mode(mode):
|
206 |
if mode == "νμΌ μ
λ‘λ":
|
207 |
-
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
208 |
else:
|
209 |
-
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
|
210 |
|
211 |
def display_image(image_file):
|
212 |
image=Image.open(image_file)
|
@@ -223,7 +223,7 @@ def display_folder_images(image_file_path_list):
|
|
223 |
image_files_cnt=len(image_files)
|
224 |
current_image_index = 0
|
225 |
if image_files:
|
226 |
-
return Image.open(image_files[current_image_index]), os.path.basename(image_files[current_image_index]), gr.update(interactive=False), gr.update(interactive=True)
|
227 |
return None, "No images found"
|
228 |
|
229 |
|
@@ -245,6 +245,9 @@ def prev_image():
|
|
245 |
return Image.open(image_files[current_image_index]), os.path.basename(image_files[current_image_index]), gr.update(interactive=not prev_disabled), gr.update(interactive= not next_disabled)
|
246 |
return None, "No images found"
|
247 |
|
|
|
|
|
|
|
248 |
css = """
|
249 |
.dataframe-class {
|
250 |
overflow-y: auto !important; /* μ€ν¬λ‘€μ κ°λ₯νκ² */
|
@@ -261,6 +264,7 @@ with gr.Blocks(css=css) as iface:
|
|
261 |
mode_selector = gr.Radio(["νμΌ μ
λ‘λ", "ν΄λ μ
λ‘λ"], label="Upload Mode", value="νμΌ μ
λ‘λ")
|
262 |
image_uploader = gr.File(file_count="single", file_types=["image"], visible=True)
|
263 |
folder_uploader = gr.File(file_count="directory", file_types=["image"], visible=False, height=50)
|
|
|
264 |
model_type=gr.Dropdown(["VAIV_DePlot","gpt-4o-mini","all"],value="VAIV_DePlot",label="model",multiselect=True)
|
265 |
image_displayer = gr.Image(visible=True)
|
266 |
image_name = gr.Text("", visible=True)
|
@@ -287,13 +291,14 @@ with gr.Blocks(css=css) as iface:
|
|
287 |
mode_selector.change(
|
288 |
toggle_mode,
|
289 |
inputs=[mode_selector],
|
290 |
-
outputs=[image_uploader, folder_uploader, prev_button, next_button]
|
291 |
)
|
292 |
|
293 |
image_uploader.upload(display_image,inputs=[image_uploader],outputs=[image_displayer,image_name])
|
294 |
-
folder_uploader.upload(display_folder_images, inputs=[folder_uploader], outputs=[image_displayer, image_name, prev_button, next_button])
|
295 |
prev_button.click(prev_image, outputs=[image_displayer, image_name, prev_button, next_button])
|
296 |
next_button.click(next_image, outputs=[image_displayer, image_name, prev_button, next_button])
|
|
|
297 |
inference_button.click(inference,inputs=[image_uploader,mode_selector],outputs=[ko_deplot_generated_df, gpt_generated_df, ko_deplot_generated_txt, gpt_generated_txt])
|
298 |
|
299 |
if __name__ == "__main__":
|
|
|
74 |
return formatted_output
|
75 |
|
76 |
# Set your OpenAI API key
|
77 |
+
openai.api_key = "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"
|
78 |
|
79 |
# Function to encode the image as base64
|
80 |
def encode_image(image_path):
|
|
|
204 |
|
205 |
def toggle_mode(mode):
|
206 |
if mode == "νμΌ μ
λ‘λ":
|
207 |
+
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False) , gr.update(visible=False)
|
208 |
else:
|
209 |
+
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
|
210 |
|
211 |
def display_image(image_file):
|
212 |
image=Image.open(image_file)
|
|
|
223 |
image_files_cnt=len(image_files)
|
224 |
current_image_index = 0
|
225 |
if image_files:
|
226 |
+
return Image.open(image_files[current_image_index]), os.path.basename(image_files[current_image_index]), gr.update(interactive=False), gr.update(interactive=True), gr.update(visible = True), gr.update(visible = False)
|
227 |
return None, "No images found"
|
228 |
|
229 |
|
|
|
245 |
return Image.open(image_files[current_image_index]), os.path.basename(image_files[current_image_index]), gr.update(interactive=not prev_disabled), gr.update(interactive= not next_disabled)
|
246 |
return None, "No images found"
|
247 |
|
248 |
+
def folder_reupload():
|
249 |
+
return gr.update(visible=False), gr.update(visible=True)
|
250 |
+
|
251 |
css = """
|
252 |
.dataframe-class {
|
253 |
overflow-y: auto !important; /* μ€ν¬λ‘€μ κ°λ₯νκ² */
|
|
|
264 |
mode_selector = gr.Radio(["νμΌ μ
λ‘λ", "ν΄λ μ
λ‘λ"], label="Upload Mode", value="νμΌ μ
λ‘λ")
|
265 |
image_uploader = gr.File(file_count="single", file_types=["image"], visible=True)
|
266 |
folder_uploader = gr.File(file_count="directory", file_types=["image"], visible=False, height=50)
|
267 |
+
folder_reupload_button = gr.Button("ν΄λ μ
λ‘λ", visible=False)
|
268 |
model_type=gr.Dropdown(["VAIV_DePlot","gpt-4o-mini","all"],value="VAIV_DePlot",label="model",multiselect=True)
|
269 |
image_displayer = gr.Image(visible=True)
|
270 |
image_name = gr.Text("", visible=True)
|
|
|
291 |
mode_selector.change(
|
292 |
toggle_mode,
|
293 |
inputs=[mode_selector],
|
294 |
+
outputs=[image_uploader, folder_uploader, prev_button, next_button, folder_reupload_button]
|
295 |
)
|
296 |
|
297 |
image_uploader.upload(display_image,inputs=[image_uploader],outputs=[image_displayer,image_name])
|
298 |
+
folder_uploader.upload(display_folder_images, inputs=[folder_uploader], outputs=[image_displayer, image_name, prev_button, next_button, folder_reupload_button, folder_uploader])
|
299 |
prev_button.click(prev_image, outputs=[image_displayer, image_name, prev_button, next_button])
|
300 |
next_button.click(next_image, outputs=[image_displayer, image_name, prev_button, next_button])
|
301 |
+
folder_reupload_button.click(folder_reupload, outputs =[folder_reupload_button, folder_uploader])
|
302 |
inference_button.click(inference,inputs=[image_uploader,mode_selector],outputs=[ko_deplot_generated_df, gpt_generated_df, ko_deplot_generated_txt, gpt_generated_txt])
|
303 |
|
304 |
if __name__ == "__main__":
|