Sangjun2 commited on
Commit
428cc21
·
verified ·
1 Parent(s): 1b30121

gpu duration update

Browse files
Files changed (1) hide show
  1. app.py +6 -6
app.py CHANGED
@@ -45,7 +45,7 @@ aihub_deplot_model_path='./deplot_k.pt'
45
  t5_model_path = './ke_t5.pt'
46
 
47
  # Load first model ko-deplot
48
- @spaces.GPU(enable_queue=True)
49
  def load_model1():
50
  processor1 = Pix2StructProcessor.from_pretrained('nuua/ko-deplot')
51
  model1 = Pix2StructForConditionalGeneration.from_pretrained('nuua/ko-deplot')
@@ -56,7 +56,7 @@ def load_model1():
56
  processor1,model1=load_model1()
57
 
58
  # Load second model aihub-deplot
59
- @spaces.GPU(enable_queue=True)
60
  def load_model2():
61
  processor2 = AutoProcessor.from_pretrained("ybelkada/pix2struct-base")
62
  model2 = Pix2StructForConditionalGeneration.from_pretrained("ybelkada/pix2struct-base")
@@ -68,7 +68,7 @@ processor2,model2=load_model2()
68
 
69
 
70
  #Load third model unichart
71
- @spaces.GPU(enable_queue=True)
72
  def load_model3():
73
  unichart_model_path = "./unichart"
74
  model3 = VisionEncoderDecoderModel.from_pretrained(unichart_model_path)
@@ -84,7 +84,7 @@ def format_output(prediction):
84
  return prediction.replace('<0x0A>', '\n')
85
 
86
  # First model prediction ko-deplot
87
- @spaces.GPU(enable_queue=True)
88
  def predict_model1(image):
89
  images = [image]
90
  inputs = processor1(images=images, text="What is the title of the chart", return_tensors="pt", padding=True)
@@ -117,7 +117,7 @@ def replace_unk(text):
117
  return text
118
 
119
  # Second model prediction aihub_deplot
120
- @spaces.GPU(enable_queue=True)
121
  def predict_model2(image):
122
  image = image.convert("RGB")
123
  inputs = processor2(images=image, return_tensors="pt", max_patches=MAX_PATCHES).to(device)
@@ -134,7 +134,7 @@ def predict_model2(image):
134
  refined_table = replace_unk(generated_datatable)
135
  return refined_table
136
 
137
- @spaces.GPU(enable_queue=True)
138
  def predict_model3(image):
139
  image=image.convert("RGB")
140
  input_prompt = "<extract_data_table> <s_answer>"
 
45
  t5_model_path = './ke_t5.pt'
46
 
47
  # Load first model ko-deplot
48
+ @spaces.GPU(enable_queue=True,duration=120)
49
  def load_model1():
50
  processor1 = Pix2StructProcessor.from_pretrained('nuua/ko-deplot')
51
  model1 = Pix2StructForConditionalGeneration.from_pretrained('nuua/ko-deplot')
 
56
  processor1,model1=load_model1()
57
 
58
  # Load second model aihub-deplot
59
+ @spaces.GPU(enable_queue=True,duration=120)
60
  def load_model2():
61
  processor2 = AutoProcessor.from_pretrained("ybelkada/pix2struct-base")
62
  model2 = Pix2StructForConditionalGeneration.from_pretrained("ybelkada/pix2struct-base")
 
68
 
69
 
70
  #Load third model unichart
71
+ @spaces.GPU(enable_queue=True,duration=120)
72
  def load_model3():
73
  unichart_model_path = "./unichart"
74
  model3 = VisionEncoderDecoderModel.from_pretrained(unichart_model_path)
 
84
  return prediction.replace('<0x0A>', '\n')
85
 
86
  # First model prediction ko-deplot
87
+ @spaces.GPU(enable_queue=True,duration=120)
88
  def predict_model1(image):
89
  images = [image]
90
  inputs = processor1(images=images, text="What is the title of the chart", return_tensors="pt", padding=True)
 
117
  return text
118
 
119
  # Second model prediction aihub_deplot
120
+ @spaces.GPU(enable_queue=True,duration=120)
121
  def predict_model2(image):
122
  image = image.convert("RGB")
123
  inputs = processor2(images=image, return_tensors="pt", max_patches=MAX_PATCHES).to(device)
 
134
  refined_table = replace_unk(generated_datatable)
135
  return refined_table
136
 
137
+ @spaces.GPU(enable_queue=True,duration=120)
138
  def predict_model3(image):
139
  image=image.convert("RGB")
140
  input_prompt = "<extract_data_table> <s_answer>"