Sanj004's picture
Update app.py
3d24bdc verified
raw
history blame
1.04 kB
import gradio as gr
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
#from datasets import load_dataset
import torch
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
#SAVED_MODEL_PATH = 'bart_base_full_finetune_save'
SAVED_MODEL_PATH = './bart_base_full_finetune_save
model_name = "facebook/bart-base"
model = AutoModelForSeq2SeqLM.from_pretrained(SAVED_MODEL_PATH).to(device)
tokenizer = AutoTokenizer.from_pretrained(model_name)
def summarize(text):
inputs = tokenizer(f"Summarize dialogue >>\n {text}", return_tensors="pt", max_length=1000, truncation=True, padding="max_length").to(device)
summary_ids = model.generate(inputs.input_ids, num_beams=4, max_length=100, early_stopping=True)
summary = [tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in summary_ids]
return summary[0]
iface = gr.Interface(
fn=summarize,
inputs=gr.Textbox(lines=10, label="Input Dialogue"),
outputs=gr.Textbox(label="Generated Summary")
)
iface.launch()