Sanjayraju30 commited on
Commit
1b73e6b
Β·
verified Β·
1 Parent(s): b2ab875

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -18
app.py CHANGED
@@ -1,37 +1,33 @@
1
  import gradio as gr
2
  from transformers import pipeline
3
 
4
- # βœ… Load FLAN-T5 model for polite, instruction-based replies
5
- generator = pipeline("text2text-generation", model="google/flan-t5-small")
6
 
7
- # πŸ“Œ Instruction template
8
  TEMPLATE = (
9
- "You are a helpful, polite, and professional customer support agent. "
10
- "Reply to this customer message in a brand-consistent tone:\n\n"
11
- "{input}"
12
  )
13
 
14
- # πŸ” Reply Generator
15
  def generate_reply(user_input):
16
  prompt = TEMPLATE.format(input=user_input)
17
- response = generator(prompt, max_length=150, do_sample=False)[0]["generated_text"]
18
  return response.strip()
19
 
20
- # πŸŽ›οΈ Gradio Interface
21
  iface = gr.Interface(
22
  fn=generate_reply,
23
  inputs=gr.Textbox(lines=6, label="Customer Message", placeholder="Enter complaint or question..."),
24
- outputs=gr.Textbox(label="Auto-Generated Support Reply"),
25
- title="πŸ€– Auto-Reply Generator for Customer Support",
26
- description=(
27
- "Generate fast, polite, and professional replies to customer queries using Google's FLAN-T5 model. "
28
- "Perfect for CRM bots, helpdesk automation, and ticket response."
29
- ),
30
  examples=[
31
  ["I still haven't received my order and it's been 10 days."],
32
- ["My refund hasn't been processed yet."],
33
- ["Your app keeps crashing on my iPhone."],
34
- ["Great service, just wanted to say thanks!"]
35
  ]
36
  )
37
 
 
1
  import gradio as gr
2
  from transformers import pipeline
3
 
4
+ # πŸš€ Use lightweight, faster FLAN model
5
+ generator = pipeline("text2text-generation", model="google/flan-t5-xs")
6
 
7
+ # ✨ Prompt Template
8
  TEMPLATE = (
9
+ "You are a polite and professional customer support agent. "
10
+ "Please respond to the customer's message:\n\n{input}"
 
11
  )
12
 
13
+ # 🎯 Response Function
14
  def generate_reply(user_input):
15
  prompt = TEMPLATE.format(input=user_input)
16
+ response = generator(prompt, max_length=80, do_sample=False)[0]["generated_text"]
17
  return response.strip()
18
 
19
+ # πŸŽ› Interface
20
  iface = gr.Interface(
21
  fn=generate_reply,
22
  inputs=gr.Textbox(lines=6, label="Customer Message", placeholder="Enter complaint or question..."),
23
+ outputs=gr.Textbox(label="Support Reply"),
24
+ title="⚑ Fast Auto-Reply Generator for Customer Support",
25
+ description="Fast & polite auto-replies to customer complaints using a tiny FLAN-T5 model. Perfect for CRM or helpdesk automation.",
 
 
 
26
  examples=[
27
  ["I still haven't received my order and it's been 10 days."],
28
+ ["Why was I charged twice for my subscription?"],
29
+ ["Thanks for the quick response yesterday!"],
30
+ ["My login isn't working since the update."]
31
  ]
32
  )
33