Spaces:
Runtime error
Runtime error
File size: 1,334 Bytes
6b14fa5 65ed4c1 8fe1b94 a71f519 6b14fa5 65ed4c1 363a646 65ed4c1 363a646 65ed4c1 103f82b 363a646 a71f519 701d11a 103f82b a71f519 33069a9 103f82b 8fe1b94 65ed4c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
import easyocr
import numpy as np
import cv2
import re
reader = easyocr.Reader(['en'], gpu=False)
def extract_weight_from_image(pil_img):
try:
img = np.array(pil_img)
# Convert to grayscale and resize
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
gray = cv2.resize(gray, None, fx=2, fy=2, interpolation=cv2.INTER_CUBIC)
# Histogram equalization and adaptive threshold
gray = cv2.equalizeHist(gray)
thresh = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY, 11, 2)
thresh = cv2.bitwise_not(thresh)
# OCR with bounding boxes
results = reader.readtext(thresh)
# Filter potential weight values
candidates = []
for (bbox, text, confidence) in results:
# Clean text
clean_text = text.replace('kg', '').strip()
if re.fullmatch(r"\d{2,4}(\.\d{1,2})?", clean_text):
candidates.append((clean_text, confidence))
if not candidates:
return "Not detected", 0.0
# Choose the highest confidence match
best_weight, conf = sorted(candidates, key=lambda x: -x[1])[0]
return best_weight, round(conf, 2)
except Exception as e:
return f"Error: {str(e)}", 0.0
|