File size: 989 Bytes
6b14fa5
65ed4c1
5b73d24
8fe1b94
6b14fa5
 
65ed4c1
363a646
65ed4c1
363a646
65ed4c1
701d11a
363a646
701d11a
6b14fa5
8fe1b94
 
6b14fa5
8fe1b94
6b14fa5
701d11a
6b14fa5
 
 
 
8fe1b94
6b14fa5
 
65ed4c1
 
 
 
8fe1b94
65ed4c1
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import easyocr
import numpy as np
import re
import cv2

reader = easyocr.Reader(['en'], gpu=False)

def extract_weight_from_image(pil_img):
    try:
        img = np.array(pil_img)

        # Convert to grayscale
        gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)

        # Resize to improve OCR accuracy
        resized = cv2.resize(gray, None, fx=2, fy=2, interpolation=cv2.INTER_CUBIC)

        # Blur and threshold
        blurred = cv2.GaussianBlur(resized, (5, 5), 0)
        _, thresh = cv2.threshold(blurred, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)

        # OCR
        result = reader.readtext(thresh, detail=0)
        text = " ".join(result)
        print("OCR Text:", text)

        # Regex to find weight like 002.50 or 55.3
        match = re.search(r"\b\d{2,4}\.?\d{0,2}\b", text)
        if match:
            return match.group(), 95.0
        else:
            return "No weight detected", 0.0

    except Exception as e:
        return f"Error: {str(e)}", 0.0