Spaces:
Runtime error
Runtime error
File size: 1,365 Bytes
ee1d691 65ed4c1 8fe1b94 a71f519 6b14fa5 ee1d691 363a646 65ed4c1 ee1d691 363a646 65ed4c1 ee1d691 363a646 ee1d691 e91f073 ee1d691 103f82b ee1d691 103f82b ee1d691 8fe1b94 65ed4c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
import easyocr
import numpy as np
import cv2
import re
# Initialize OCR reader once
reader = easyocr.Reader(['en'], gpu=False)
def extract_weight_from_image(pil_img):
try:
# Convert image to NumPy format
img = np.array(pil_img)
# Resize and preprocess
img = cv2.resize(img, None, fx=3.5, fy=3.5, interpolation=cv2.INTER_LINEAR)
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
gray = cv2.bilateralFilter(gray, 11, 17, 17)
_, thresh = cv2.threshold(gray, 120, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
# OCR
results = reader.readtext(thresh)
# Debug
print("OCR Results:", results)
weight_candidates = []
for _, text, conf in results:
clean = text.lower().replace("kg", "").strip()
clean = clean.replace("o", "0").replace("O", "0") # fix OCR misreads
# Match weights like 86, 85.5, 102.3
if re.fullmatch(r"\d{2,4}(\.\d{1,2})?", clean):
weight_candidates.append((clean, conf))
if not weight_candidates:
return "Not detected", 0.0
# Return best candidate
best_weight, best_conf = sorted(weight_candidates, key=lambda x: -x[1])[0]
return best_weight, round(best_conf * 100, 2)
except Exception as e:
return f"Error: {str(e)}", 0.0
|