Spaces:
Runtime error
Runtime error
File size: 1,367 Bytes
6b14fa5 65ed4c1 8fe1b94 a71f519 6b14fa5 65ed4c1 363a646 65ed4c1 363a646 65ed4c1 f901f58 363a646 701d11a f901f58 33069a9 f901f58 103f82b f901f58 103f82b f901f58 103f82b f901f58 8fe1b94 65ed4c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
import easyocr
import numpy as np
import cv2
import re
reader = easyocr.Reader(['en'], gpu=False)
def extract_weight_from_image(pil_img):
try:
img = np.array(pil_img)
# Resize and convert to grayscale
img = cv2.resize(img, None, fx=2.5, fy=2.5, interpolation=cv2.INTER_LINEAR)
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
# Apply Gaussian blur to remove noise
blurred = cv2.GaussianBlur(gray, (5, 5), 0)
# Apply adaptive threshold
thresh = cv2.adaptiveThreshold(blurred, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY_INV, 15, 6)
# OCR
results = reader.readtext(thresh)
# Debug: Print all detected text
print("OCR Results:", results)
weight_candidates = []
for _, text, conf in results:
text = text.lower().replace('kg', '').replace('kgs', '').strip()
if re.match(r'^\d{2,4}(\.\d{1,2})?$', text):
weight_candidates.append((text, conf))
if not weight_candidates:
return "Not detected", 0.0
# Return the one with highest confidence
weight, confidence = sorted(weight_candidates, key=lambda x: -x[1])[0]
return weight, round(confidence * 100, 2)
except Exception as e:
return f"Error: {str(e)}", 0.0
|