File size: 1,367 Bytes
6b14fa5
65ed4c1
8fe1b94
a71f519
6b14fa5
 
65ed4c1
363a646
65ed4c1
363a646
65ed4c1
f901f58
 
363a646
701d11a
f901f58
 
33069a9
f901f58
 
 
 
 
103f82b
 
f901f58
 
 
 
 
 
 
 
103f82b
f901f58
103f82b
 
f901f58
 
 
8fe1b94
65ed4c1
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import easyocr
import numpy as np
import cv2
import re

reader = easyocr.Reader(['en'], gpu=False)

def extract_weight_from_image(pil_img):
    try:
        img = np.array(pil_img)

        # Resize and convert to grayscale
        img = cv2.resize(img, None, fx=2.5, fy=2.5, interpolation=cv2.INTER_LINEAR)
        gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)

        # Apply Gaussian blur to remove noise
        blurred = cv2.GaussianBlur(gray, (5, 5), 0)

        # Apply adaptive threshold
        thresh = cv2.adaptiveThreshold(blurred, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
                                       cv2.THRESH_BINARY_INV, 15, 6)

        # OCR
        results = reader.readtext(thresh)

        # Debug: Print all detected text
        print("OCR Results:", results)

        weight_candidates = []
        for _, text, conf in results:
            text = text.lower().replace('kg', '').replace('kgs', '').strip()
            if re.match(r'^\d{2,4}(\.\d{1,2})?$', text):
                weight_candidates.append((text, conf))

        if not weight_candidates:
            return "Not detected", 0.0

        # Return the one with highest confidence
        weight, confidence = sorted(weight_candidates, key=lambda x: -x[1])[0]
        return weight, round(confidence * 100, 2)

    except Exception as e:
        return f"Error: {str(e)}", 0.0