AutoWeightLogger / ocr_engine.py
Sanjayraju30's picture
Update ocr_engine.py
42886cd verified
raw
history blame
2.1 kB
from mmocr.utils.ocr import MMOCR
import numpy as np
import cv2
import re
from PIL import Image
# Load MMOCR (det + recog)
ocr = MMOCR(det='DBPANet', recog='SAR', device='cpu') # CPU mode for Hugging Face
def extract_weight_from_image(pil_img):
try:
img = np.array(pil_img.convert("RGB"))[:, :, ::-1]
result = ocr.readtext(img, print_result=False, output=None)[0]['result']
raw_texts = []
weight_candidates = []
fallback_weight = None
fallback_conf = 0.0
for text, conf in result:
original = text
cleaned = text.lower().strip()
cleaned = cleaned.replace(",", ".")
cleaned = cleaned.replace("o", "0").replace("O", "0")
cleaned = cleaned.replace("s", "5").replace("S", "5")
cleaned = cleaned.replace("g", "9").replace("G", "6")
cleaned = cleaned.replace("kg", "").replace("kgs", "")
cleaned = re.sub(r"[^0-9\.]", "", cleaned)
raw_texts.append(f"{original} β†’ {cleaned} (conf: {round(conf, 2)})")
if cleaned and cleaned.replace(".", "").isdigit() and not fallback_weight:
fallback_weight = cleaned
fallback_conf = conf
if cleaned.count(".") <= 1 and re.fullmatch(r"\d{2,4}(\.\d{1,3})?", cleaned):
weight_candidates.append((cleaned, conf))
if weight_candidates:
best_weight, best_conf = sorted(weight_candidates, key=lambda x: -x[1])[0]
elif fallback_weight:
best_weight, best_conf = fallback_weight, fallback_conf
else:
return "Not detected", 0.0, "\n".join(raw_texts)
if "." in best_weight:
int_part, dec_part = best_weight.split(".")
int_part = int_part.lstrip("0") or "0"
best_weight = f"{int_part}.{dec_part}"
else:
best_weight = best_weight.lstrip("0") or "0"
return best_weight, round(best_conf * 100, 2), "\n".join(raw_texts)
except Exception as e:
return f"Error: {str(e)}", 0.0, "OCR failed"