Spaces:
Runtime error
Runtime error
import pytesseract | |
import numpy as np | |
import re | |
import cv2 | |
from PIL import Image | |
def extract_weight_from_image(pil_img): | |
try: | |
# Convert PIL image to numpy array | |
img = np.array(pil_img) | |
# Convert to grayscale | |
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) | |
# Resize image to improve OCR accuracy | |
resized = cv2.resize(gray, None, fx=2, fy=2, interpolation=cv2.INTER_CUBIC) | |
# Apply Gaussian blur | |
blurred = cv2.GaussianBlur(resized, (5, 5), 0) | |
# Apply adaptive thresholding for better contrast | |
thresh = cv2.adaptiveThreshold( | |
blurred, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 11, 2 | |
) | |
# OCR config: use digit-only mode and whitelist characters | |
config = "--psm 7 -c tessedit_char_whitelist=0123456789." | |
# Extract text using pytesseract | |
ocr_text = pytesseract.image_to_string(thresh, config=config) | |
print("OCR Text:", ocr_text) | |
# Use regex to find weight values (e.g., 52.35, 002.50 etc.) | |
match = re.search(r"\b\d{2,4}\.?\d{0,2}\b", ocr_text) | |
if match: | |
return match.group(), 95.0 | |
else: | |
return "No weight detected", 0.0 | |
except Exception as e: | |
return f"Error: {str(e)}", 0.0 | |