AutoWeightLogger / ocr_engine.py
Sanjayraju30's picture
Update ocr_engine.py
da9f292 verified
raw
history blame
1.57 kB
import easyocr
import numpy as np
import cv2
import re
reader = easyocr.Reader(['en'], gpu=False)
def extract_weight_from_image(pil_img):
try:
img = np.array(pil_img)
# Resize and grayscale
img = cv2.resize(img, None, fx=3.5, fy=3.5, interpolation=cv2.INTER_LINEAR)
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
# Denoise and threshold
gray = cv2.bilateralFilter(gray, 11, 17, 17)
thresh = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY_INV, 11, 2)
results = reader.readtext(thresh)
all_texts = [text for _, text, _ in results]
weight_candidates = []
for _, text, conf in results:
cleaned = text.lower()
cleaned = cleaned.replace("kg", "").replace("kgs", "")
cleaned = cleaned.replace("o", "0").replace("O", "0")
cleaned = cleaned.replace("s", "5").replace("S", "5")
cleaned = cleaned.replace("g", "9").replace("G", "6")
cleaned = re.sub(r"[^\d\.]", "", cleaned)
if re.fullmatch(r"\d{2,4}(\.\d{1,2})?", cleaned):
weight_candidates.append((cleaned, conf))
if not weight_candidates:
return "Not detected", 0.0, "\n".join(all_texts)
best_weight, best_conf = sorted(weight_candidates, key=lambda x: -x[1])[0]
return best_weight, round(best_conf * 100, 2), "\n".join(all_texts)
except Exception as e:
return f"Error: {str(e)}", 0.0, "OCR failed"