AutoWeightLogger / ocr_engine.py
Sanjayraju30's picture
Update ocr_engine.py
89fe87f verified
raw
history blame
1.79 kB
import easyocr
import numpy as np
import cv2
import re
reader = easyocr.Reader(['en'], gpu=False)
def enhance_image(img):
# Resize large image down to avoid OCR failure
max_dim = 1000
height, width = img.shape[:2]
if max(height, width) > max_dim:
scale = max_dim / max(height, width)
img = cv2.resize(img, None, fx=scale, fy=scale, interpolation=cv2.INTER_AREA)
# Convert to gray
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
# Denoise
gray = cv2.fastNlMeansDenoising(gray, h=15)
# Sharpen
kernel = np.array([[0, -1, 0], [-1, 5,-1], [0, -1, 0]])
sharp = cv2.filter2D(gray, -1, kernel)
# Contrast
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))
contrast = clahe.apply(sharp)
return contrast
def extract_weight_from_image(pil_img):
try:
img = np.array(pil_img)
enhanced = enhance_image(img)
results = reader.readtext(enhanced)
print("DEBUG OCR RESULTS:", results)
ocr_texts = [text for _, text, _ in results]
weight_candidates = []
for _, text, conf in results:
cleaned = text.lower().replace("kg", "").replace("kgs", "")
cleaned = cleaned.replace("o", "0").replace("s", "5").replace("g", "9")
cleaned = re.sub(r"[^\d\.]", "", cleaned)
if re.fullmatch(r"\d{2,4}(\.\d{1,2})?", cleaned):
weight_candidates.append((cleaned, conf))
if not weight_candidates:
return "Not detected", 0.0, "\n".join(ocr_texts)
best_weight, best_conf = sorted(weight_candidates, key=lambda x: -x[1])[0]
return best_weight, round(best_conf * 100, 2), "\n".join(ocr_texts)
except Exception as e:
return f"Error: {str(e)}", 0.0, "OCR failed"