Spaces:
Runtime error
Runtime error
Update ocr_engine.py
Browse files- ocr_engine.py +15 -19
ocr_engine.py
CHANGED
@@ -3,39 +3,35 @@ import numpy as np
|
|
3 |
import cv2
|
4 |
import re
|
5 |
|
|
|
6 |
reader = easyocr.Reader(['en'], gpu=False)
|
7 |
|
8 |
def extract_weight_from_image(pil_img):
|
9 |
try:
|
|
|
10 |
img = np.array(pil_img)
|
11 |
|
12 |
-
#
|
13 |
-
img = cv2.resize(img, None, fx=
|
14 |
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
|
|
|
|
|
|
|
15 |
|
16 |
-
#
|
17 |
-
|
18 |
-
|
19 |
-
# Apply adaptive threshold
|
20 |
-
thresh = cv2.adaptiveThreshold(blurred, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
|
21 |
-
cv2.THRESH_BINARY_INV, 15, 6)
|
22 |
-
|
23 |
-
# OCR
|
24 |
-
results = reader.readtext(thresh)
|
25 |
-
|
26 |
-
# Debug: Print all detected text
|
27 |
-
print("OCR Results:", results)
|
28 |
|
|
|
29 |
weight_candidates = []
|
30 |
-
for
|
31 |
-
|
32 |
-
if re.
|
33 |
-
weight_candidates.append((
|
34 |
|
35 |
if not weight_candidates:
|
36 |
return "Not detected", 0.0
|
37 |
|
38 |
-
#
|
39 |
weight, confidence = sorted(weight_candidates, key=lambda x: -x[1])[0]
|
40 |
return weight, round(confidence * 100, 2)
|
41 |
|
|
|
3 |
import cv2
|
4 |
import re
|
5 |
|
6 |
+
# Load the OCR engine
|
7 |
reader = easyocr.Reader(['en'], gpu=False)
|
8 |
|
9 |
def extract_weight_from_image(pil_img):
|
10 |
try:
|
11 |
+
# Convert PIL to OpenCV image (numpy array)
|
12 |
img = np.array(pil_img)
|
13 |
|
14 |
+
# Step 1: Preprocess image for better OCR
|
15 |
+
img = cv2.resize(img, None, fx=3, fy=3, interpolation=cv2.INTER_LINEAR)
|
16 |
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
|
17 |
+
blur = cv2.GaussianBlur(gray, (3, 3), 0)
|
18 |
+
_, thresh = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
|
19 |
+
thresh = cv2.bitwise_not(thresh) # Invert for dark digits
|
20 |
|
21 |
+
# Step 2: Run OCR
|
22 |
+
results = reader.readtext(thresh, detail=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
+
# Step 3: Extract numbers like 65.20 or 50
|
25 |
weight_candidates = []
|
26 |
+
for bbox, text, conf in results:
|
27 |
+
clean = text.lower().replace("kg", "").replace("kgs", "").strip()
|
28 |
+
if re.fullmatch(r"\d{2,4}(\.\d{1,2})?", clean):
|
29 |
+
weight_candidates.append((clean, conf))
|
30 |
|
31 |
if not weight_candidates:
|
32 |
return "Not detected", 0.0
|
33 |
|
34 |
+
# Step 4: Choose highest confidence number
|
35 |
weight, confidence = sorted(weight_candidates, key=lambda x: -x[1])[0]
|
36 |
return weight, round(confidence * 100, 2)
|
37 |
|