Spaces:
Runtime error
Runtime error
Update ocr_engine.py
Browse files- ocr_engine.py +5 -21
ocr_engine.py
CHANGED
@@ -1,46 +1,30 @@
|
|
1 |
-
import easyocr
|
2 |
-
import numpy as np
|
3 |
-
import cv2
|
4 |
-
import re
|
5 |
-
|
6 |
-
reader = easyocr.Reader(['en'], gpu=False)
|
7 |
-
|
8 |
def extract_weight_from_image(pil_img):
|
9 |
try:
|
10 |
img = np.array(pil_img)
|
11 |
-
|
12 |
-
# Resize and grayscale
|
13 |
img = cv2.resize(img, None, fx=3.5, fy=3.5, interpolation=cv2.INTER_LINEAR)
|
14 |
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
|
15 |
-
|
16 |
-
# Denoise & Adaptive Thresholding
|
17 |
gray = cv2.bilateralFilter(gray, 11, 17, 17)
|
18 |
thresh = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
|
19 |
cv2.THRESH_BINARY_INV, 11, 2)
|
20 |
|
21 |
-
# Run OCR
|
22 |
results = reader.readtext(thresh)
|
23 |
-
|
24 |
-
print("OCR Results:", results)
|
25 |
|
26 |
weight_candidates = []
|
27 |
for _, text, conf in results:
|
28 |
-
cleaned = text.lower()
|
29 |
-
cleaned = cleaned.replace("kg", "").replace("kgs", "")
|
30 |
cleaned = cleaned.replace("o", "0").replace("O", "0")
|
31 |
cleaned = cleaned.replace("s", "5").replace("S", "5")
|
32 |
cleaned = cleaned.replace("g", "9").replace("G", "6")
|
33 |
-
|
34 |
cleaned = re.sub(r"[^\d\.]", "", cleaned)
|
35 |
-
|
36 |
if re.fullmatch(r"\d{2,4}(\.\d{1,2})?", cleaned):
|
37 |
weight_candidates.append((cleaned, conf))
|
38 |
|
39 |
if not weight_candidates:
|
40 |
-
return "Not detected", 0.0
|
41 |
|
42 |
best_weight, best_conf = sorted(weight_candidates, key=lambda x: -x[1])[0]
|
43 |
-
return best_weight, round(best_conf * 100, 2)
|
44 |
|
45 |
except Exception as e:
|
46 |
-
return f"Error: {str(e)}", 0.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
def extract_weight_from_image(pil_img):
|
2 |
try:
|
3 |
img = np.array(pil_img)
|
|
|
|
|
4 |
img = cv2.resize(img, None, fx=3.5, fy=3.5, interpolation=cv2.INTER_LINEAR)
|
5 |
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
|
|
|
|
|
6 |
gray = cv2.bilateralFilter(gray, 11, 17, 17)
|
7 |
thresh = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
|
8 |
cv2.THRESH_BINARY_INV, 11, 2)
|
9 |
|
|
|
10 |
results = reader.readtext(thresh)
|
11 |
+
all_texts = [text for _, text, _ in results]
|
|
|
12 |
|
13 |
weight_candidates = []
|
14 |
for _, text, conf in results:
|
15 |
+
cleaned = text.lower().replace("kg", "").replace("kgs", "")
|
|
|
16 |
cleaned = cleaned.replace("o", "0").replace("O", "0")
|
17 |
cleaned = cleaned.replace("s", "5").replace("S", "5")
|
18 |
cleaned = cleaned.replace("g", "9").replace("G", "6")
|
|
|
19 |
cleaned = re.sub(r"[^\d\.]", "", cleaned)
|
|
|
20 |
if re.fullmatch(r"\d{2,4}(\.\d{1,2})?", cleaned):
|
21 |
weight_candidates.append((cleaned, conf))
|
22 |
|
23 |
if not weight_candidates:
|
24 |
+
return "Not detected", 0.0, "\n".join(all_texts)
|
25 |
|
26 |
best_weight, best_conf = sorted(weight_candidates, key=lambda x: -x[1])[0]
|
27 |
+
return best_weight, round(best_conf * 100, 2), "\n".join(all_texts)
|
28 |
|
29 |
except Exception as e:
|
30 |
+
return f"Error: {str(e)}", 0.0, "OCR failed"
|