Spaces:
Runtime error
Runtime error
Update ocr_engine.py
Browse files- ocr_engine.py +19 -20
ocr_engine.py
CHANGED
@@ -7,38 +7,37 @@ reader = easyocr.Reader(['en'], gpu=False)
|
|
7 |
|
8 |
def extract_weight_from_image(pil_img):
|
9 |
try:
|
|
|
10 |
img = np.array(pil_img)
|
11 |
|
12 |
-
#
|
13 |
-
img = cv2.resize(img, None, fx=
|
14 |
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
|
15 |
|
16 |
-
#
|
17 |
blur = cv2.GaussianBlur(gray, (5, 5), 0)
|
18 |
-
_,
|
|
|
19 |
|
20 |
-
#
|
21 |
-
|
22 |
|
23 |
-
#
|
24 |
-
results = reader.readtext(inverted)
|
25 |
-
|
26 |
-
# Debug print
|
27 |
-
print("OCR Results:", results)
|
28 |
-
|
29 |
-
# STEP 4: Extract weight values using regex
|
30 |
weight_candidates = []
|
31 |
-
for
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
35 |
|
36 |
if not weight_candidates:
|
37 |
return "Not detected", 0.0
|
38 |
|
39 |
-
#
|
40 |
-
|
41 |
-
return
|
42 |
|
43 |
except Exception as e:
|
44 |
return f"Error: {str(e)}", 0.0
|
|
|
7 |
|
8 |
def extract_weight_from_image(pil_img):
|
9 |
try:
|
10 |
+
# Convert PIL to NumPy
|
11 |
img = np.array(pil_img)
|
12 |
|
13 |
+
# Step 1: Preprocessing
|
14 |
+
img = cv2.resize(img, None, fx=3.5, fy=3.5, interpolation=cv2.INTER_LINEAR)
|
15 |
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
|
16 |
|
17 |
+
# Improve contrast & threshold
|
18 |
blur = cv2.GaussianBlur(gray, (5, 5), 0)
|
19 |
+
_, binary = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
|
20 |
+
binary = cv2.bitwise_not(binary)
|
21 |
|
22 |
+
# Step 2: OCR with bounding boxes
|
23 |
+
results = reader.readtext(binary, detail=1)
|
24 |
|
25 |
+
# Step 3: Filter for weight-like values
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
weight_candidates = []
|
27 |
+
for bbox, text, conf in results:
|
28 |
+
clean = text.lower().replace("kg", "").replace("kgs", "").strip()
|
29 |
+
clean = clean.replace("o", "0").replace("O", "0") # common OCR mistake
|
30 |
+
|
31 |
+
# Match like 2 digits or 3 digits or decimal numbers
|
32 |
+
if re.fullmatch(r"\d{2,4}(\.\d{1,2})?", clean):
|
33 |
+
weight_candidates.append((clean, conf))
|
34 |
|
35 |
if not weight_candidates:
|
36 |
return "Not detected", 0.0
|
37 |
|
38 |
+
# Step 4: Pick most confident
|
39 |
+
best_weight, best_conf = sorted(weight_candidates, key=lambda x: -x[1])[0]
|
40 |
+
return best_weight, round(best_conf * 100, 2)
|
41 |
|
42 |
except Exception as e:
|
43 |
return f"Error: {str(e)}", 0.0
|