Sanjayraju30 commited on
Commit
2469d8d
·
verified ·
1 Parent(s): e91f073

Update ocr_engine.py

Browse files
Files changed (1) hide show
  1. ocr_engine.py +19 -20
ocr_engine.py CHANGED
@@ -7,38 +7,37 @@ reader = easyocr.Reader(['en'], gpu=False)
7
 
8
  def extract_weight_from_image(pil_img):
9
  try:
 
10
  img = np.array(pil_img)
11
 
12
- # STEP 1: Resize and convert to grayscale
13
- img = cv2.resize(img, None, fx=4, fy=4, interpolation=cv2.INTER_CUBIC)
14
  gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
15
 
16
- # STEP 2: Denoise + Threshold
17
  blur = cv2.GaussianBlur(gray, (5, 5), 0)
18
- _, thresh = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
 
19
 
20
- # Invert to get black text on white background
21
- inverted = cv2.bitwise_not(thresh)
22
 
23
- # STEP 3: OCR
24
- results = reader.readtext(inverted)
25
-
26
- # Debug print
27
- print("OCR Results:", results)
28
-
29
- # STEP 4: Extract weight values using regex
30
  weight_candidates = []
31
- for _, text, conf in results:
32
- text = text.replace("kg", "").replace("KG", "").strip()
33
- if re.match(r"^\d{2,4}(\.\d{1,2})?$", text):
34
- weight_candidates.append((text, conf))
 
 
 
35
 
36
  if not weight_candidates:
37
  return "Not detected", 0.0
38
 
39
- # STEP 5: Highest confidence
40
- weight, confidence = sorted(weight_candidates, key=lambda x: -x[1])[0]
41
- return weight, round(confidence * 100, 2)
42
 
43
  except Exception as e:
44
  return f"Error: {str(e)}", 0.0
 
7
 
8
  def extract_weight_from_image(pil_img):
9
  try:
10
+ # Convert PIL to NumPy
11
  img = np.array(pil_img)
12
 
13
+ # Step 1: Preprocessing
14
+ img = cv2.resize(img, None, fx=3.5, fy=3.5, interpolation=cv2.INTER_LINEAR)
15
  gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
16
 
17
+ # Improve contrast & threshold
18
  blur = cv2.GaussianBlur(gray, (5, 5), 0)
19
+ _, binary = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
20
+ binary = cv2.bitwise_not(binary)
21
 
22
+ # Step 2: OCR with bounding boxes
23
+ results = reader.readtext(binary, detail=1)
24
 
25
+ # Step 3: Filter for weight-like values
 
 
 
 
 
 
26
  weight_candidates = []
27
+ for bbox, text, conf in results:
28
+ clean = text.lower().replace("kg", "").replace("kgs", "").strip()
29
+ clean = clean.replace("o", "0").replace("O", "0") # common OCR mistake
30
+
31
+ # Match like 2 digits or 3 digits or decimal numbers
32
+ if re.fullmatch(r"\d{2,4}(\.\d{1,2})?", clean):
33
+ weight_candidates.append((clean, conf))
34
 
35
  if not weight_candidates:
36
  return "Not detected", 0.0
37
 
38
+ # Step 4: Pick most confident
39
+ best_weight, best_conf = sorted(weight_candidates, key=lambda x: -x[1])[0]
40
+ return best_weight, round(best_conf * 100, 2)
41
 
42
  except Exception as e:
43
  return f"Error: {str(e)}", 0.0