Sanjayraju30 commited on
Commit
29533d7
·
verified ·
1 Parent(s): 005d086

Update ocr_engine.py

Browse files
Files changed (1) hide show
  1. ocr_engine.py +20 -8
ocr_engine.py CHANGED
@@ -3,31 +3,32 @@ import numpy as np
3
  import cv2
4
  import re
5
 
 
6
  reader = easyocr.Reader(['en'], gpu=False)
7
 
8
  def enhance_image(img):
9
- # Resize big images
10
  max_dim = 1000
11
  height, width = img.shape[:2]
12
  if max(height, width) > max_dim:
13
  scale = max_dim / max(height, width)
14
  img = cv2.resize(img, None, fx=scale, fy=scale, interpolation=cv2.INTER_AREA)
15
 
16
- # Grayscale
17
  gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
18
 
19
  # Denoise
20
  gray = cv2.fastNlMeansDenoising(gray, h=15)
21
 
22
  # Sharpen
23
- kernel = np.array([[0, -1, 0], [-1, 5,-1], [0, -1, 0]])
24
  sharp = cv2.filter2D(gray, -1, kernel)
25
 
26
- # Contrast
27
  clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
28
- contrast = clahe.apply(sharp)
29
 
30
- return contrast
31
 
32
  def extract_weight_from_image(pil_img):
33
  try:
@@ -41,18 +42,29 @@ def extract_weight_from_image(pil_img):
41
  weight_candidates = []
42
 
43
  for _, text, conf in results:
44
- cleaned = text.lower()
 
 
 
 
 
 
45
  cleaned = cleaned.replace("kg", "").replace("kgs", "")
46
- cleaned = cleaned.replace("o", "0").replace("s", "5").replace("g", "9")
47
  cleaned = re.sub(r"[^\d\.]", "", cleaned)
48
 
 
49
  if re.fullmatch(r"\d{2,4}(\.\d{1,2})?", cleaned):
50
  weight_candidates.append((cleaned, conf))
51
 
52
  if not weight_candidates:
53
  return "Not detected", 0.0, "\n".join(ocr_texts)
54
 
 
55
  best_weight, best_conf = sorted(weight_candidates, key=lambda x: -x[1])[0]
 
 
 
 
56
  return best_weight, round(best_conf * 100, 2), "\n".join(ocr_texts)
57
 
58
  except Exception as e:
 
3
  import cv2
4
  import re
5
 
6
+ # Initialize EasyOCR
7
  reader = easyocr.Reader(['en'], gpu=False)
8
 
9
  def enhance_image(img):
10
+ # Downscale large images
11
  max_dim = 1000
12
  height, width = img.shape[:2]
13
  if max(height, width) > max_dim:
14
  scale = max_dim / max(height, width)
15
  img = cv2.resize(img, None, fx=scale, fy=scale, interpolation=cv2.INTER_AREA)
16
 
17
+ # Convert to grayscale
18
  gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
19
 
20
  # Denoise
21
  gray = cv2.fastNlMeansDenoising(gray, h=15)
22
 
23
  # Sharpen
24
+ kernel = np.array([[0, -1, 0], [-1, 5, -1], [0, -1, 0]])
25
  sharp = cv2.filter2D(gray, -1, kernel)
26
 
27
+ # Enhance contrast
28
  clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
29
+ enhanced = clahe.apply(sharp)
30
 
31
+ return enhanced
32
 
33
  def extract_weight_from_image(pil_img):
34
  try:
 
42
  weight_candidates = []
43
 
44
  for _, text, conf in results:
45
+ cleaned = text.lower().strip()
46
+
47
+ # Replace common OCR misreads
48
+ cleaned = cleaned.replace(",", ".")
49
+ cleaned = cleaned.replace("o", "0").replace("O", "0")
50
+ cleaned = cleaned.replace("s", "5").replace("S", "5")
51
+ cleaned = cleaned.replace("g", "9").replace("G", "6")
52
  cleaned = cleaned.replace("kg", "").replace("kgs", "")
 
53
  cleaned = re.sub(r"[^\d\.]", "", cleaned)
54
 
55
+ # Match numbers like 84.5, 102.3, 99.9
56
  if re.fullmatch(r"\d{2,4}(\.\d{1,2})?", cleaned):
57
  weight_candidates.append((cleaned, conf))
58
 
59
  if not weight_candidates:
60
  return "Not detected", 0.0, "\n".join(ocr_texts)
61
 
62
+ # Pick highest confidence match
63
  best_weight, best_conf = sorted(weight_candidates, key=lambda x: -x[1])[0]
64
+
65
+ # Strip leading zeros if any
66
+ best_weight = best_weight.lstrip('0') or '0'
67
+
68
  return best_weight, round(best_conf * 100, 2), "\n".join(ocr_texts)
69
 
70
  except Exception as e: