Spaces:
Runtime error
Runtime error
Update ocr_engine.py
Browse files- ocr_engine.py +11 -19
ocr_engine.py
CHANGED
@@ -1,32 +1,28 @@
|
|
1 |
-
import
|
2 |
import numpy as np
|
3 |
import cv2
|
4 |
import re
|
|
|
5 |
|
6 |
-
#
|
7 |
-
|
8 |
|
9 |
def extract_weight_from_image(pil_img):
|
10 |
try:
|
11 |
-
|
|
|
12 |
|
13 |
-
#
|
14 |
-
|
15 |
-
height, width = img.shape[:2]
|
16 |
-
if max(height, width) > max_dim:
|
17 |
-
scale = max_dim / max(height, width)
|
18 |
-
img = cv2.resize(img, None, fx=scale, fy=scale, interpolation=cv2.INTER_AREA)
|
19 |
-
|
20 |
-
# OCR recognition
|
21 |
-
results = reader.readtext(img)
|
22 |
-
print("DEBUG OCR RESULTS:", results)
|
23 |
|
24 |
raw_texts = []
|
25 |
weight_candidates = []
|
26 |
fallback_weight = None
|
27 |
fallback_conf = 0.0
|
28 |
|
29 |
-
for
|
|
|
|
|
30 |
original = text
|
31 |
cleaned = text.lower().strip()
|
32 |
|
@@ -40,16 +36,13 @@ def extract_weight_from_image(pil_img):
|
|
40 |
|
41 |
raw_texts.append(f"{original} → {cleaned} (conf: {round(conf, 2)})")
|
42 |
|
43 |
-
# Save fallback if no match later
|
44 |
if cleaned and cleaned.replace(".", "").isdigit() and not fallback_weight:
|
45 |
fallback_weight = cleaned
|
46 |
fallback_conf = conf
|
47 |
|
48 |
-
# Match proper weight format: 75.02, 97.2, 105
|
49 |
if cleaned.count(".") <= 1 and re.fullmatch(r"\d{2,4}(\.\d{1,3})?", cleaned):
|
50 |
weight_candidates.append((cleaned, conf))
|
51 |
|
52 |
-
# Choose best candidate
|
53 |
if weight_candidates:
|
54 |
best_weight, best_conf = sorted(weight_candidates, key=lambda x: -x[1])[0]
|
55 |
elif fallback_weight:
|
@@ -57,7 +50,6 @@ def extract_weight_from_image(pil_img):
|
|
57 |
else:
|
58 |
return "Not detected", 0.0, "\n".join(raw_texts)
|
59 |
|
60 |
-
# Strip unnecessary leading zeros
|
61 |
if "." in best_weight:
|
62 |
int_part, dec_part = best_weight.split(".")
|
63 |
int_part = int_part.lstrip("0") or "0"
|
|
|
1 |
+
from mmocr.apis import MMOCRInferencer
|
2 |
import numpy as np
|
3 |
import cv2
|
4 |
import re
|
5 |
+
from PIL import Image
|
6 |
|
7 |
+
# Initialize MMOCR
|
8 |
+
ocr = MMOCRInferencer(det='DBNet', recog='SAR', device='cpu') # or 'cuda' if GPU available
|
9 |
|
10 |
def extract_weight_from_image(pil_img):
|
11 |
try:
|
12 |
+
# Convert PIL to OpenCV image (BGR)
|
13 |
+
img = np.array(pil_img.convert("RGB"))[:, :, ::-1]
|
14 |
|
15 |
+
# Run MMOCR inference
|
16 |
+
result = ocr(img)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
raw_texts = []
|
19 |
weight_candidates = []
|
20 |
fallback_weight = None
|
21 |
fallback_conf = 0.0
|
22 |
|
23 |
+
for item in result['predictions'][0]:
|
24 |
+
text = item['text']
|
25 |
+
conf = item.get('score', 0.8) # Fallback confidence
|
26 |
original = text
|
27 |
cleaned = text.lower().strip()
|
28 |
|
|
|
36 |
|
37 |
raw_texts.append(f"{original} → {cleaned} (conf: {round(conf, 2)})")
|
38 |
|
|
|
39 |
if cleaned and cleaned.replace(".", "").isdigit() and not fallback_weight:
|
40 |
fallback_weight = cleaned
|
41 |
fallback_conf = conf
|
42 |
|
|
|
43 |
if cleaned.count(".") <= 1 and re.fullmatch(r"\d{2,4}(\.\d{1,3})?", cleaned):
|
44 |
weight_candidates.append((cleaned, conf))
|
45 |
|
|
|
46 |
if weight_candidates:
|
47 |
best_weight, best_conf = sorted(weight_candidates, key=lambda x: -x[1])[0]
|
48 |
elif fallback_weight:
|
|
|
50 |
else:
|
51 |
return "Not detected", 0.0, "\n".join(raw_texts)
|
52 |
|
|
|
53 |
if "." in best_weight:
|
54 |
int_part, dec_part = best_weight.split(".")
|
55 |
int_part = int_part.lstrip("0") or "0"
|