Spaces:
Runtime error
Runtime error
Update ocr_engine.py
Browse files- ocr_engine.py +45 -35
ocr_engine.py
CHANGED
@@ -5,54 +5,64 @@ import re
|
|
5 |
|
6 |
reader = easyocr.Reader(['en'], gpu=False)
|
7 |
|
8 |
-
def enhance_image(img):
|
9 |
-
# Resize large image down to avoid OCR failure
|
10 |
-
max_dim = 1000
|
11 |
-
height, width = img.shape[:2]
|
12 |
-
if max(height, width) > max_dim:
|
13 |
-
scale = max_dim / max(height, width)
|
14 |
-
img = cv2.resize(img, None, fx=scale, fy=scale, interpolation=cv2.INTER_AREA)
|
15 |
-
|
16 |
-
# Convert to gray
|
17 |
-
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
|
18 |
-
|
19 |
-
# Denoise
|
20 |
-
gray = cv2.fastNlMeansDenoising(gray, h=15)
|
21 |
-
|
22 |
-
# Sharpen
|
23 |
-
kernel = np.array([[0, -1, 0], [-1, 5,-1], [0, -1, 0]])
|
24 |
-
sharp = cv2.filter2D(gray, -1, kernel)
|
25 |
-
|
26 |
-
# Contrast
|
27 |
-
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))
|
28 |
-
contrast = clahe.apply(sharp)
|
29 |
-
|
30 |
-
return contrast
|
31 |
-
|
32 |
def extract_weight_from_image(pil_img):
|
33 |
try:
|
34 |
img = np.array(pil_img)
|
35 |
-
enhanced = enhance_image(img)
|
36 |
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
print("DEBUG OCR RESULTS:", results)
|
39 |
|
40 |
-
|
41 |
weight_candidates = []
|
42 |
|
|
|
|
|
|
|
43 |
for _, text, conf in results:
|
44 |
-
|
45 |
-
cleaned =
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
weight_candidates.append((cleaned, conf))
|
50 |
|
51 |
-
if
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
-
best_weight, best_conf
|
55 |
-
return best_weight, round(best_conf * 100, 2), "\n".join(ocr_texts)
|
56 |
|
57 |
except Exception as e:
|
58 |
return f"Error: {str(e)}", 0.0, "OCR failed"
|
|
|
5 |
|
6 |
reader = easyocr.Reader(['en'], gpu=False)
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
def extract_weight_from_image(pil_img):
|
9 |
try:
|
10 |
img = np.array(pil_img)
|
|
|
11 |
|
12 |
+
# Resize if image is too big
|
13 |
+
max_dim = 1000
|
14 |
+
height, width = img.shape[:2]
|
15 |
+
if max(height, width) > max_dim:
|
16 |
+
scale = max_dim / max(height, width)
|
17 |
+
img = cv2.resize(img, None, fx=scale, fy=scale, interpolation=cv2.INTER_AREA)
|
18 |
+
|
19 |
+
# OCR
|
20 |
+
results = reader.readtext(img)
|
21 |
print("DEBUG OCR RESULTS:", results)
|
22 |
|
23 |
+
raw_texts = []
|
24 |
weight_candidates = []
|
25 |
|
26 |
+
fallback_weight = None
|
27 |
+
fallback_conf = 0.0
|
28 |
+
|
29 |
for _, text, conf in results:
|
30 |
+
original = text
|
31 |
+
cleaned = text.lower().strip()
|
32 |
+
|
33 |
+
cleaned = cleaned.replace(",", ".")
|
34 |
+
cleaned = cleaned.replace("o", "0").replace("O", "0")
|
35 |
+
cleaned = cleaned.replace("s", "5").replace("S", "5")
|
36 |
+
cleaned = cleaned.replace("g", "9").replace("G", "6")
|
37 |
+
cleaned = cleaned.replace("kg", "").replace("kgs", "")
|
38 |
+
cleaned = re.sub(r"[^0-9\.]", "", cleaned)
|
39 |
|
40 |
+
raw_texts.append(f"{original} → {cleaned} (conf: {round(conf, 2)})")
|
41 |
+
|
42 |
+
# Save fallback if any number
|
43 |
+
if cleaned and cleaned.replace(".", "").isdigit() and not fallback_weight:
|
44 |
+
fallback_weight = cleaned
|
45 |
+
fallback_conf = conf
|
46 |
+
|
47 |
+
if cleaned.count(".") <= 1 and re.fullmatch(r"\d{2,4}(\.\d{1,3})?", cleaned):
|
48 |
weight_candidates.append((cleaned, conf))
|
49 |
|
50 |
+
if weight_candidates:
|
51 |
+
best_weight, best_conf = sorted(weight_candidates, key=lambda x: -x[1])[0]
|
52 |
+
elif fallback_weight:
|
53 |
+
best_weight, best_conf = fallback_weight, fallback_conf
|
54 |
+
else:
|
55 |
+
return "Not detected", 0.0, "\n".join(raw_texts)
|
56 |
+
|
57 |
+
# Clean up leading zeros
|
58 |
+
if "." in best_weight:
|
59 |
+
int_part, dec_part = best_weight.split(".")
|
60 |
+
int_part = int_part.lstrip("0") or "0"
|
61 |
+
best_weight = f"{int_part}.{dec_part}"
|
62 |
+
else:
|
63 |
+
best_weight = best_weight.lstrip("0") or "0"
|
64 |
|
65 |
+
return best_weight, round(best_conf * 100, 2), "\n".join(raw_texts)
|
|
|
66 |
|
67 |
except Exception as e:
|
68 |
return f"Error: {str(e)}", 0.0, "OCR failed"
|