import easyocr import numpy as np import cv2 import re reader = easyocr.Reader(['en'], gpu=False) def extract_weight_from_image(pil_img): try: img = np.array(pil_img) # Convert to grayscale and resize for better clarity gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) gray = cv2.resize(gray, None, fx=2, fy=2, interpolation=cv2.INTER_CUBIC) # Histogram equalization gray = cv2.equalizeHist(gray) # Adaptive threshold to enhance text thresh = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 2) # Invert for LCD-like contrast thresh = cv2.bitwise_not(thresh) # OCR read result = reader.readtext(thresh, detail=0) combined_text = " ".join(result) print("OCR Text:", combined_text) # Regex to match weight like 25, 46.5, 75.45 etc. match = re.search(r"\b\d{2,4}\.?\d{0,2}\b", combined_text) if match: return match.group(), 95.0 else: return "No weight detected", 0.0 except Exception as e: return f"Error: {str(e)}", 0.0