import easyocr import numpy as np import cv2 import re reader = easyocr.Reader(['en'], gpu=False) def extract_weight_from_image(pil_img): try: # Convert PIL to NumPy img = np.array(pil_img) # Step 1: Preprocessing img = cv2.resize(img, None, fx=3.5, fy=3.5, interpolation=cv2.INTER_LINEAR) gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) # Improve contrast & threshold blur = cv2.GaussianBlur(gray, (5, 5), 0) _, binary = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) binary = cv2.bitwise_not(binary) # Step 2: OCR with bounding boxes results = reader.readtext(binary, detail=1) # Step 3: Filter for weight-like values weight_candidates = [] for bbox, text, conf in results: clean = text.lower().replace("kg", "").replace("kgs", "").strip() clean = clean.replace("o", "0").replace("O", "0") # common OCR mistake # Match like 2 digits or 3 digits or decimal numbers if re.fullmatch(r"\d{2,4}(\.\d{1,2})?", clean): weight_candidates.append((clean, conf)) if not weight_candidates: return "Not detected", 0.0 # Step 4: Pick most confident best_weight, best_conf = sorted(weight_candidates, key=lambda x: -x[1])[0] return best_weight, round(best_conf * 100, 2) except Exception as e: return f"Error: {str(e)}", 0.0