import easyocr import numpy as np import cv2 import re reader = easyocr.Reader(['en'], gpu=False) def extract_weight_from_image(pil_img): try: img = np.array(pil_img) # No enhancement, just resize max_dim = 1000 height, width = img.shape[:2] if max(height, width) > max_dim: scale = max_dim / max(height, width) img = cv2.resize(img, None, fx=scale, fy=scale, interpolation=cv2.INTER_AREA) results = reader.readtext(img) print("DEBUG OCR RESULTS:", results) if not results: return "No text detected", 0.0, "OCR returned empty list" raw_texts = [] weight_candidates = [] for _, text, conf in results: original = text cleaned = text.lower().strip() cleaned = cleaned.replace(",", ".") cleaned = cleaned.replace("o", "0").replace("O", "0") cleaned = cleaned.replace("s", "5").replace("S", "5") cleaned = cleaned.replace("g", "9").replace("G", "6") cleaned = cleaned.replace("kg", "").replace("kgs", "") cleaned = re.sub(r"[^\d\.]", "", cleaned) raw_texts.append(f"{original} → {cleaned} (conf: {round(conf, 2)})") if re.fullmatch(r"\d{2,4}(\.\d{1,3})?", cleaned): weight_candidates.append((cleaned, conf)) if not weight_candidates: return "Not detected", 0.0, "\n".join(raw_texts) best_weight, best_conf = sorted(weight_candidates, key=lambda x: -x[1])[0] return best_weight, round(best_conf * 100, 2), "\n".join(raw_texts) except Exception as e: return f"Error: {str(e)}", 0.0, "OCR failed"