import pytesseract import numpy as np import cv2 import re def extract_weight_from_image(pil_img): try: img = np.array(pil_img) # Preprocessing gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) resized = cv2.resize(gray, None, fx=2, fy=2, interpolation=cv2.INTER_CUBIC) blur = cv2.GaussianBlur(resized, (5, 5), 0) _, thresh = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) # OCR using pytesseract config = "--psm 6" # Assume a single uniform block of text text = pytesseract.image_to_string(thresh, config=config) print("OCR Output:", text) # Regex to find weight-like numbers match = re.search(r"\b\d{1,4}\.?\d{0,2}\b", text) if match: return match.group(), 95.0 else: return "No weight detected", 0.0 except Exception as e: return f"Error: {str(e)}", 0.0