from paddleocr import PaddleOCR import numpy as np import re ocr = PaddleOCR(use_angle_cls=True, lang='en', use_gpu=False) def extract_weight_from_image(pil_img): try: img = np.array(pil_img) result = ocr.ocr(img, cls=True) all_text = [] weight_candidates = [] for line in result: for box, (text, confidence) in line: all_text.append(text) cleaned = text.lower() cleaned = cleaned.replace("kg", "").replace("kgs", "") cleaned = cleaned.replace("o", "0").replace("s", "5").replace("g", "9") cleaned = re.sub(r"[^\d\.]", "", cleaned) if re.fullmatch(r"\d{2,4}(\.\d{1,2})?", cleaned): weight_candidates.append((cleaned, confidence)) if not weight_candidates: return "Not detected", 0.0, "\n".join(all_text) best_weight, best_conf = sorted(weight_candidates, key=lambda x: -x[1])[0] return best_weight, round(best_conf * 100, 2), "\n".join(all_text) except Exception as e: return f"Error: {str(e)}", 0.0, "OCR failed"