from mmocr.apis import MMOCRInferencer import numpy as np import cv2 import re from PIL import Image # Initialize MMOCR ocr = MMOCRInferencer(det='DBNet', recog='SAR', device='cpu') # or 'cuda' if GPU available def extract_weight_from_image(pil_img): try: # Convert PIL to OpenCV image (BGR) img = np.array(pil_img.convert("RGB"))[:, :, ::-1] # Run MMOCR inference result = ocr(img) raw_texts = [] weight_candidates = [] fallback_weight = None fallback_conf = 0.0 for item in result['predictions'][0]: text = item['text'] conf = item.get('score', 0.8) # Fallback confidence original = text cleaned = text.lower().strip() # Fix common OCR misreads cleaned = cleaned.replace(",", ".") cleaned = cleaned.replace("o", "0").replace("O", "0") cleaned = cleaned.replace("s", "5").replace("S", "5") cleaned = cleaned.replace("g", "9").replace("G", "6") cleaned = cleaned.replace("kg", "").replace("kgs", "") cleaned = re.sub(r"[^0-9\.]", "", cleaned) raw_texts.append(f"{original} → {cleaned} (conf: {round(conf, 2)})") if cleaned and cleaned.replace(".", "").isdigit() and not fallback_weight: fallback_weight = cleaned fallback_conf = conf if cleaned.count(".") <= 1 and re.fullmatch(r"\d{2,4}(\.\d{1,3})?", cleaned): weight_candidates.append((cleaned, conf)) if weight_candidates: best_weight, best_conf = sorted(weight_candidates, key=lambda x: -x[1])[0] elif fallback_weight: best_weight, best_conf = fallback_weight, fallback_conf else: return "Not detected", 0.0, "\n".join(raw_texts) if "." in best_weight: int_part, dec_part = best_weight.split(".") int_part = int_part.lstrip("0") or "0" best_weight = f"{int_part}.{dec_part}" else: best_weight = best_weight.lstrip("0") or "0" return best_weight, round(best_conf * 100, 2), "\n".join(raw_texts) except Exception as e: return f"Error: {str(e)}", 0.0, "OCR failed"