import easyocr import numpy as np import cv2 import re reader = easyocr.Reader(['en'], gpu=False) def extract_weight_from_image(pil_img): try: img = np.array(pil_img) # STEP 1: Resize and convert to grayscale img = cv2.resize(img, None, fx=4, fy=4, interpolation=cv2.INTER_CUBIC) gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) # STEP 2: Denoise + Threshold blur = cv2.GaussianBlur(gray, (5, 5), 0) _, thresh = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) # Invert to get black text on white background inverted = cv2.bitwise_not(thresh) # STEP 3: OCR results = reader.readtext(inverted) # Debug print print("OCR Results:", results) # STEP 4: Extract weight values using regex weight_candidates = [] for _, text, conf in results: text = text.replace("kg", "").replace("KG", "").strip() if re.match(r"^\d{2,4}(\.\d{1,2})?$", text): weight_candidates.append((text, conf)) if not weight_candidates: return "Not detected", 0.0 # STEP 5: Highest confidence weight, confidence = sorted(weight_candidates, key=lambda x: -x[1])[0] return weight, round(confidence * 100, 2) except Exception as e: return f"Error: {str(e)}", 0.0