import easyocr import numpy as np import cv2 import re # Initialize OCR reader once reader = easyocr.Reader(['en'], gpu=False) def extract_weight_from_image(pil_img): try: # Convert image to NumPy format img = np.array(pil_img) # Resize and preprocess img = cv2.resize(img, None, fx=3.5, fy=3.5, interpolation=cv2.INTER_LINEAR) gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) gray = cv2.bilateralFilter(gray, 11, 17, 17) _, thresh = cv2.threshold(gray, 120, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU) # OCR results = reader.readtext(thresh) # Debug print("OCR Results:", results) weight_candidates = [] for _, text, conf in results: clean = text.lower().replace("kg", "").strip() clean = clean.replace("o", "0").replace("O", "0") # fix OCR misreads # Match weights like 86, 85.5, 102.3 if re.fullmatch(r"\d{2,4}(\.\d{1,2})?", clean): weight_candidates.append((clean, conf)) if not weight_candidates: return "Not detected", 0.0 # Return best candidate best_weight, best_conf = sorted(weight_candidates, key=lambda x: -x[1])[0] return best_weight, round(best_conf * 100, 2) except Exception as e: return f"Error: {str(e)}", 0.0