import easyocr import numpy as np import cv2 import re reader = easyocr.Reader(['en'], gpu=False) def extract_weight_from_image(pil_img): try: img = np.array(pil_img) # Resize and convert to grayscale img = cv2.resize(img, None, fx=2.5, fy=2.5, interpolation=cv2.INTER_LINEAR) gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) # Apply Gaussian blur to remove noise blurred = cv2.GaussianBlur(gray, (5, 5), 0) # Apply adaptive threshold thresh = cv2.adaptiveThreshold(blurred, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, 15, 6) # OCR results = reader.readtext(thresh) # Debug: Print all detected text print("OCR Results:", results) weight_candidates = [] for _, text, conf in results: text = text.lower().replace('kg', '').replace('kgs', '').strip() if re.match(r'^\d{2,4}(\.\d{1,2})?$', text): weight_candidates.append((text, conf)) if not weight_candidates: return "Not detected", 0.0 # Return the one with highest confidence weight, confidence = sorted(weight_candidates, key=lambda x: -x[1])[0] return weight, round(confidence * 100, 2) except Exception as e: return f"Error: {str(e)}", 0.0