import easyocr import numpy as np import cv2 import re # Load the OCR engine reader = easyocr.Reader(['en'], gpu=False) def extract_weight_from_image(pil_img): try: # Convert PIL to OpenCV image (numpy array) img = np.array(pil_img) # Step 1: Preprocess image for better OCR img = cv2.resize(img, None, fx=3, fy=3, interpolation=cv2.INTER_LINEAR) gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) blur = cv2.GaussianBlur(gray, (3, 3), 0) _, thresh = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) thresh = cv2.bitwise_not(thresh) # Invert for dark digits # Step 2: Run OCR results = reader.readtext(thresh, detail=1) # Step 3: Extract numbers like 65.20 or 50 weight_candidates = [] for bbox, text, conf in results: clean = text.lower().replace("kg", "").replace("kgs", "").strip() if re.fullmatch(r"\d{2,4}(\.\d{1,2})?", clean): weight_candidates.append((clean, conf)) if not weight_candidates: return "Not detected", 0.0 # Step 4: Choose highest confidence number weight, confidence = sorted(weight_candidates, key=lambda x: -x[1])[0] return weight, round(confidence * 100, 2) except Exception as e: return f"Error: {str(e)}", 0.0