import easyocr import numpy as np import cv2 import re reader = easyocr.Reader(['en'], gpu=False) def extract_weight_from_image(pil_img): try: img = np.array(pil_img) # Resize and grayscale img = cv2.resize(img, None, fx=4, fy=4, interpolation=cv2.INTER_LINEAR) gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) gray = cv2.bilateralFilter(gray, 11, 17, 17) _, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) results = reader.readtext(thresh) ocr_raw_texts = [] weight_candidates = [] for _, text, conf in results: ocr_raw_texts.append(text) t = text.lower() t = t.replace("kg", "").replace("kgs", "") t = t.replace("o", "0").replace("O", "0") t = t.replace("s", "5").replace("S", "5") t = t.replace("g", "9").replace("G", "6") t = re.sub(r"[^\d\.]", "", t) if re.fullmatch(r"\d{2,4}(\.\d{1,2})?", t): weight_candidates.append((t, conf)) if not weight_candidates: return "Not detected", 0.0, "\n".join(ocr_raw_texts) best_weight, best_conf = sorted(weight_candidates, key=lambda x: -x[1])[0] return best_weight, round(best_conf * 100, 2), "\n".join(ocr_raw_texts) except Exception as e: return f"Error: {str(e)}", 0.0, "OCR failed"