import easyocr import numpy as np import re import cv2 reader = easyocr.Reader(['en'], gpu=False) def extract_weight_from_image(pil_img): try: img = np.array(pil_img) # Step 1: Convert to grayscale gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) # Step 2: Apply adaptive threshold to handle lighting thresh = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, 11, 2) # Step 3: Dilate to make digits thicker kernel = np.ones((2, 2), np.uint8) dilated = cv2.dilate(thresh, kernel, iterations=1) # Step 4: OCR on the preprocessed image result = reader.readtext(dilated, detail=0) text = " ".join(result).strip() print("OCR Text:", text) # Step 5: Match numeric values like 52.30 or 003.25 match = re.search(r"\b\d{2,4}\.?\d{0,2}\b", text) if match: return match.group(), 95.0 else: return "No weight detected", 0.0 except Exception as e: return f"Error: {str(e)}", 0.0