import easyocr import numpy as np import cv2 import re # Load OCR engine reader = easyocr.Reader(['en'], gpu=False) def extract_weight_from_image(pil_img): try: img = np.array(pil_img) # Resize large image if needed max_dim = 1000 height, width = img.shape[:2] if max(height, width) > max_dim: scale = max_dim / max(height, width) img = cv2.resize(img, None, fx=scale, fy=scale, interpolation=cv2.INTER_AREA) # OCR without heavy preprocessing results = reader.readtext(img) print("DEBUG OCR RESULTS:", results) raw_texts = [] weight_candidates = [] for _, text, conf in results: original = text cleaned = text.lower().strip() # Fix common OCR mistakes cleaned = cleaned.replace(",", ".") cleaned = cleaned.replace("o", "0").replace("O", "0") cleaned = cleaned.replace("s", "5").replace("S", "5") cleaned = cleaned.replace("g", "9").replace("G", "6") cleaned = cleaned.replace("kg", "").replace("kgs", "") cleaned = re.sub(r"[^0-9\.]", "", cleaned) raw_texts.append(f"{original} → {cleaned} (conf: {round(conf, 2)})") # Match flexible weight formats like 75.02, 97.2, 102.34 if cleaned.count(".") <= 1 and re.match(r"^\d{2,4}(\.\d{1,3})?$", cleaned): weight_candidates.append((cleaned, conf)) if not weight_candidates: return "Not detected", 0.0, "\n".join(raw_texts) # Get best weight best_weight, best_conf = sorted(weight_candidates, key=lambda x: -x[1])[0] # Strip unnecessary leading zeros if "." in best_weight: int_part, dec_part = best_weight.split(".") int_part = int_part.lstrip("0") or "0" best_weight = f"{int_part}.{dec_part}" else: best_weight = best_weight.lstrip("0") or "0" return best_weight, round(best_conf * 100, 2), "\n".join(raw_texts) except Exception as e: return f"Error: {str(e)}", 0.0, "OCR failed"