import easyocr import numpy as np import cv2 import re reader = easyocr.Reader(['en'], gpu=False) def extract_weight_from_image(pil_img): try: img = np.array(pil_img) # Resize and grayscale img = cv2.resize(img, None, fx=3.5, fy=3.5, interpolation=cv2.INTER_LINEAR) gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) # Denoise and threshold gray = cv2.bilateralFilter(gray, 11, 17, 17) thresh = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, 11, 2) results = reader.readtext(thresh) all_texts = [text for _, text, _ in results] weight_candidates = [] for _, text, conf in results: cleaned = text.lower() cleaned = cleaned.replace("kg", "").replace("kgs", "") cleaned = cleaned.replace("o", "0").replace("O", "0") cleaned = cleaned.replace("s", "5").replace("S", "5") cleaned = cleaned.replace("g", "9").replace("G", "6") cleaned = re.sub(r"[^\d\.]", "", cleaned) if re.fullmatch(r"\d{2,4}(\.\d{1,2})?", cleaned): weight_candidates.append((cleaned, conf)) if not weight_candidates: return "Not detected", 0.0, "\n".join(all_texts) best_weight, best_conf = sorted(weight_candidates, key=lambda x: -x[1])[0] return best_weight, round(best_conf * 100, 2), "\n".join(all_texts) except Exception as e: return f"Error: {str(e)}", 0.0, "OCR failed"