Spaces:
Running
Running
File size: 1,311 Bytes
6b14fa5 65ed4c1 8fe1b94 a71f519 6b14fa5 65ed4c1 363a646 65ed4c1 363a646 65ed4c1 029a668 363a646 33069a9 f0bddce 029a668 33069a9 f0bddce a71f519 029a668 33069a9 029a668 65ed4c1 f0bddce 029a668 f0bddce 8fe1b94 65ed4c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
import easyocr
import numpy as np
import cv2
import re
reader = easyocr.Reader(['en'], gpu=False)
def extract_weight_from_image(pil_img):
try:
img = np.array(pil_img)
# Convert to grayscale
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
# Enhance contrast
gray = cv2.equalizeHist(gray)
# Resize to enhance small text
gray = cv2.resize(gray, None, fx=2, fy=2, interpolation=cv2.INTER_LINEAR)
# Add light blur to reduce noise
gray = cv2.GaussianBlur(gray, (3, 3), 0)
# Invert for LCD screens with dark backgrounds
inverted = cv2.bitwise_not(gray)
# OCR
result = reader.readtext(inverted, detail=0)
combined_text = " ".join(result)
print("OCR Result:", combined_text)
# Try to detect weight pattern like "25kg" or "25.3kg"
match = re.search(r"(\d{1,4}(?:\.\d{1,2})?)\s?(kg)", combined_text, re.IGNORECASE)
if match:
return f"{match.group(1)} kg", 95.0
# Fallback: detect numbers only
fallback = re.search(r"\d{1,4}(?:\.\d{1,2})?", combined_text)
if fallback:
return f"{fallback.group(0)} kg", 75.0
return "No weight detected kg", 0.0
except Exception as e:
return f"Error: {str(e)}", 0.0
|