File size: 1,190 Bytes
6b14fa5
65ed4c1
8fe1b94
a71f519
6b14fa5
 
65ed4c1
363a646
65ed4c1
363a646
65ed4c1
f0bddce
363a646
5665756
33069a9
f0bddce
 
5665756
 
33069a9
f0bddce
 
a71f519
 
33069a9
f0bddce
 
65ed4c1
f0bddce
65ed4c1
f0bddce
 
 
 
 
 
8fe1b94
65ed4c1
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import easyocr
import numpy as np
import cv2
import re

reader = easyocr.Reader(['en'], gpu=False)

def extract_weight_from_image(pil_img):
    try:
        img = np.array(pil_img)

        # Grayscale and resize
        gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
        gray = cv2.resize(gray, None, fx=2, fy=2, interpolation=cv2.INTER_LINEAR)

        # Enhance contrast
        gray = cv2.equalizeHist(gray)
        blurred = cv2.GaussianBlur(gray, (3, 3), 0)
        inverted = cv2.bitwise_not(blurred)

        # OCR
        result = reader.readtext(inverted, detail=0)
        combined_text = " ".join(result)
        print("OCR Text:", combined_text)

        # Match weight in KG (like 25kg or 25.00 kg)
        match = re.search(r'(\d{1,4}(?:\.\d{1,2})?)\s?(kg)', combined_text, re.IGNORECASE)
        if match:
            return f"{match.group(1)} kg", 95.0
        else:
            # Fallback to just number
            fallback = re.search(r'\d{1,4}(?:\.\d{1,2})?', combined_text)
            if fallback:
                return f"{fallback.group(0)} kg", 90.0

        return "No weight detected kg", 0.0

    except Exception as e:
        return f"Error: {str(e)}", 0.0