Spaces:
Running
Running
File size: 1,570 Bytes
a481416 eff70bd a481416 eff70bd a481416 eff70bd 6a56695 eff70bd a481416 eff70bd 8c50e18 eff70bd a481416 eff70bd a481416 eff70bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
import gradio as gr
from PIL import Image
import torch
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
from datetime import datetime
import pytz
# Load the model and processor from Hugging Face
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-stage1")
model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-stage1")
# Function to detect weight text from image
def detect_weight(image):
try:
# Preprocess image
pixel_values = processor(images=image, return_tensors="pt").pixel_values
# Run model
generated_ids = model.generate(pixel_values)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
# Try to extract weight-like number
import re
match = re.search(r"(\d{1,3}(\.\d{1,2})?)", generated_text)
weight = match.group(1) if match else "Not detected"
# Get IST time
ist = pytz.timezone('Asia/Kolkata')
current_time = datetime.now(ist).strftime("%Y-%m-%d %H:%M:%S")
return f"Weight: {weight} kg\nCaptured At: {current_time}", image
except Exception as e:
return f"Error: {str(e)}", image
# Gradio UI
interface = gr.Interface(
fn=detect_weight,
inputs=gr.Image(type="pil", label="Upload or Capture Image"),
outputs=[gr.Textbox(label="Weight Info"), gr.Image(label="Snapshot")],
title="⚖️ Auto Weight Detector (No Tesseract)",
description="Detects weight from digital scale image using AI-based OCR (no Tesseract)."
)
interface.launch()
|