Spaces:
Running
Running
import easyocr | |
import numpy as np | |
import cv2 | |
import re | |
# Initialize OCR reader once | |
reader = easyocr.Reader(['en'], gpu=False) | |
def extract_weight_from_image(pil_img): | |
try: | |
img = np.array(pil_img) | |
# Convert to grayscale | |
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) | |
# Resize for better accuracy | |
gray = cv2.resize(gray, None, fx=2, fy=2, interpolation=cv2.INTER_LINEAR) | |
# Gaussian blur to reduce noise | |
blurred = cv2.GaussianBlur(gray, (3, 3), 0) | |
# Invert colors: useful for LCD display images | |
inverted = cv2.bitwise_not(blurred) | |
# Normalize brightness | |
norm_img = cv2.normalize(inverted, None, 0, 255, cv2.NORM_MINMAX) | |
# Perform OCR | |
result = reader.readtext(norm_img, detail=0) | |
combined_text = " ".join(result) | |
print("OCR Text:", combined_text) | |
# Regex to detect numbers (e.g. 25, 75.45, 100.00) | |
match = re.search(r"\b\d{1,4}(\.\d{1,2})?\b", combined_text) | |
if match: | |
return match.group(), 95.0 | |
else: | |
return "No weight detected", 0.0 | |
except Exception as e: | |
return f"Error: {str(e)}", 0.0 | |