Spaces:
Running
Running
import easyocr | |
import numpy as np | |
import cv2 | |
import re | |
# Load EasyOCR reader | |
reader = easyocr.Reader(['en'], gpu=False) | |
def extract_weight_from_image(pil_img): | |
try: | |
img = np.array(pil_img) | |
# Resize very large images | |
max_dim = 1000 | |
height, width = img.shape[:2] | |
if max(height, width) > max_dim: | |
scale = max_dim / max(height, width) | |
img = cv2.resize(img, None, fx=scale, fy=scale, interpolation=cv2.INTER_AREA) | |
# OCR recognition | |
results = reader.readtext(img) | |
print("DEBUG OCR RESULTS:", results) | |
raw_texts = [] | |
weight_candidates = [] | |
fallback_weight = None | |
fallback_conf = 0.0 | |
for _, (text, conf) in results: | |
original = text | |
cleaned = text.lower().strip() | |
# Fix common OCR misreads | |
cleaned = cleaned.replace(",", ".") | |
cleaned = cleaned.replace("o", "0").replace("O", "0") | |
cleaned = cleaned.replace("s", "5").replace("S", "5") | |
cleaned = cleaned.replace("g", "9").replace("G", "6") | |
cleaned = cleaned.replace("kg", "").replace("kgs", "") | |
cleaned = re.sub(r"[^0-9\.]", "", cleaned) | |
raw_texts.append(f"{original} → {cleaned} (conf: {round(conf, 2)})") | |
# Save fallback if no match later | |
if cleaned and cleaned.replace(".", "").isdigit() and not fallback_weight: | |
fallback_weight = cleaned | |
fallback_conf = conf | |
# Match proper weight format: 75.02, 97.2, 105 | |
if cleaned.count(".") <= 1 and re.fullmatch(r"\d{2,4}(\.\d{1,3})?", cleaned): | |
weight_candidates.append((cleaned, conf)) | |
# Choose best candidate | |
if weight_candidates: | |
best_weight, best_conf = sorted(weight_candidates, key=lambda x: -x[1])[0] | |
elif fallback_weight: | |
best_weight, best_conf = fallback_weight, fallback_conf | |
else: | |
return "Not detected", 0.0, "\n".join(raw_texts) | |
# Strip unnecessary leading zeros | |
if "." in best_weight: | |
int_part, dec_part = best_weight.split(".") | |
int_part = int_part.lstrip("0") or "0" | |
best_weight = f"{int_part}.{dec_part}" | |
else: | |
best_weight = best_weight.lstrip("0") or "0" | |
return best_weight, round(best_conf * 100, 2), "\n".join(raw_texts) | |
except Exception as e: | |
return f"Error: {str(e)}", 0.0, "OCR failed" | |