Spaces:
Running
Running
import easyocr | |
import numpy as np | |
import re | |
import cv2 | |
reader = easyocr.Reader(['en'], gpu=False) | |
def extract_weight_from_image(pil_image): | |
try: | |
image = np.array(pil_image) | |
# Grayscale conversion | |
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) | |
# Resize to make digits clearer | |
resized = cv2.resize(gray, None, fx=3, fy=3, interpolation=cv2.INTER_CUBIC) | |
# Bilateral Filter to reduce noise | |
filtered = cv2.bilateralFilter(resized, 11, 17, 17) | |
# Adaptive Thresholding | |
thresh = cv2.adaptiveThreshold(filtered, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, | |
cv2.THRESH_BINARY, 11, 2) | |
# OCR | |
result = reader.readtext(thresh, detail=0) | |
text = " ".join(result) | |
print("OCR Output:", text) | |
# Extract weight like 25.52 or 123 | |
match = re.search(r'\d{1,4}(\.\d{1,2})?', text) | |
if match: | |
return match.group(), 95.0 | |
else: | |
return "No weight detected", 0.0 | |
except Exception as e: | |
return f"Error: {str(e)}", 0.0 | |