Spaces:
Running
Running
import gradio as gr | |
import cv2 | |
import numpy as np | |
from paddleocr import PaddleOCR | |
from datetime import datetime | |
from pytz import timezone | |
import re | |
from PIL import Image | |
# Initialize PaddleOCR | |
ocr = PaddleOCR(use_angle_cls=True, lang='en') | |
def detect_weight(image): | |
try: | |
if image is None: | |
return "No image uploaded", "N/A", None | |
image = image.convert("RGB") | |
image_np = np.array(image) | |
gray = cv2.cvtColor(image_np, cv2.COLOR_RGB2GRAY) | |
enhanced = cv2.equalizeHist(gray) | |
rgb_image = cv2.cvtColor(enhanced, cv2.COLOR_GRAY2RGB) | |
# OCR (without cls= argument for compatibility) | |
result = ocr.ocr(rgb_image) | |
best_match = None | |
best_conf = 0 | |
for line in result: | |
for box in line: | |
text, conf = box[1] | |
match = re.search(r"\d+\.\d+", text) | |
if match and conf > best_conf: | |
best_match = match.group() | |
best_conf = conf | |
if best_match: | |
now_ist = datetime.now(timezone('Asia/Kolkata')).strftime("%Y-%m-%d %H:%M:%S IST") | |
return f"Weight: {best_match} kg (Confidence: {round(best_conf * 100, 2)}%)", now_ist, image | |
else: | |
return "No weight detected kg (Confidence: 0.0%)", "N/A", image | |
except Exception as e: | |
return f"Error: {str(e)}", "Error", None | |
gr.Interface( | |
fn=detect_weight, | |
inputs=gr.Image(type="pil", label="Upload or Capture Weight Image"), | |
outputs=[ | |
gr.Text(label="Detected Weight"), | |
gr.Text(label="Captured At (IST)"), | |
gr.Image(label="Snapshot") | |
], | |
title="Auto Weight Logger", | |
description="Upload or capture a digital scale image. This app detects the weight automatically using AI." | |
).launch() | |