Spaces:
Running
Running
import easyocr | |
import numpy as np | |
import re | |
import cv2 | |
reader = easyocr.Reader(['en'], gpu=False) | |
def extract_weight_from_image(pil_img): | |
try: | |
img = np.array(pil_img) | |
# Step 1: Convert to grayscale | |
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) | |
# Step 2: Apply adaptive threshold to handle lighting | |
thresh = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, | |
cv2.THRESH_BINARY_INV, 11, 2) | |
# Step 3: Dilate to make digits thicker | |
kernel = np.ones((2, 2), np.uint8) | |
dilated = cv2.dilate(thresh, kernel, iterations=1) | |
# Step 4: OCR on the preprocessed image | |
result = reader.readtext(dilated, detail=0) | |
text = " ".join(result).strip() | |
print("OCR Text:", text) | |
# Step 5: Match numeric values like 52.30 or 003.25 | |
match = re.search(r"\b\d{2,4}\.?\d{0,2}\b", text) | |
if match: | |
return match.group(), 95.0 | |
else: | |
return "No weight detected", 0.0 | |
except Exception as e: | |
return f"Error: {str(e)}", 0.0 | |