AutoWeightLogger1 / ocr_engine.py
Sanjayraju30's picture
Update ocr_engine.py
6d57019 verified
raw
history blame
12.3 kB
import pytesseract
import numpy as np
import cv2
import re
import logging
from datetime import datetime
import os
from PIL import Image
# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# Directory for debug images
DEBUG_DIR = "debug_images"
os.makedirs(DEBUG_DIR, exist_ok=True)
def save_debug_image(img, filename_suffix, prefix=""):
"""Save image to debug directory with timestamp."""
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f")
filename = os.path.join(DEBUG_DIR, f"{prefix}{timestamp}_{filename_suffix}.png")
if isinstance(img, Image.Image):
img.save(filename)
elif len(img.shape) == 3:
cv2.imwrite(filename, cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
else:
cv2.imwrite(filename, img)
logging.info(f"Saved debug image: {filename}")
def estimate_brightness(img):
"""Estimate image brightness."""
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
return np.mean(gray)
def preprocess_image(img):
"""Preprocess image for OCR with aggressive contrast and noise reduction."""
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
brightness = estimate_brightness(img)
# Aggressive CLAHE
clahe_clip = 6.0 if brightness < 80 else 4.0
clahe = cv2.createCLAHE(clipLimit=clahe_clip, tileGridSize=(8, 8))
enhanced = clahe.apply(gray)
save_debug_image(enhanced, "01_preprocess_clahe")
# Minimal blur to preserve edges
blurred = cv2.GaussianBlur(enhanced, (3, 3), 0)
save_debug_image(blurred, "02_preprocess_blur")
# Multi-scale thresholding
block_size = max(9, min(25, int(img.shape[0] / 20) * 2 + 1))
thresh = cv2.adaptiveThreshold(blurred, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY_INV, block_size, 7)
# Morphological operations
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
thresh = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=2)
thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel, iterations=3)
save_debug_image(thresh, "03_preprocess_morph")
return thresh, enhanced
def correct_rotation(img):
"""Correct image rotation using edge detection."""
try:
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
edges = cv2.Canny(gray, 30, 100, apertureSize=3)
lines = cv2.HoughLinesP(edges, 1, np.pi / 180, threshold=40, minLineLength=20, maxLineGap=10)
if lines is not None:
angles = [np.arctan2(line[0][3] - line[0][1], line[0][2] - line[0][0]) * 180 / np.pi for line in lines]
angle = np.median(angles)
if abs(angle) > 0.5:
h, w = img.shape[:2]
center = (w // 2, h // 2)
M = cv2.getRotationMatrix2D(center, angle, 1.0)
img = cv2.warpAffine(img, M, (w, h))
save_debug_image(img, "00_rotated_image")
logging.info(f"Applied rotation: {angle:.2f} degrees")
return img
except Exception as e:
logging.error(f"Rotation correction failed: {str(e)}")
return img
def detect_roi(img):
"""Detect region of interest with aggressive contour filtering."""
try:
save_debug_image(img, "04_original")
thresh, enhanced = preprocess_image(img)
brightness_map = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
block_sizes = [max(9, min(25, int(img.shape[0] / s) * 2 + 1)) for s in [10, 15, 20]]
valid_contours = []
img_area = img.shape[0] * img.shape[1]
for block_size in block_sizes:
temp_thresh = cv2.adaptiveThreshold(enhanced, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY_INV, block_size, 7)
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
temp_thresh = cv2.morphologyEx(temp_thresh, cv2.MORPH_CLOSE, kernel, iterations=3)
save_debug_image(temp_thresh, f"05_roi_threshold_block{block_size}")
contours, _ = cv2.findContours(temp_thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
for c in contours:
area = cv2.contourArea(c)
x, y, w, h = cv2.boundingRect(c)
roi_brightness = np.mean(brightness_map[y:y+h, x:x+w])
aspect_ratio = w / h
if (500 < area < (img_area * 0.5) and
0.5 <= aspect_ratio <= 6.0 and w > 80 and h > 40 and roi_brightness > 60):
valid_contours.append((c, area * roi_brightness))
logging.debug(f"Contour (block {block_size}): Area={area}, Aspect={aspect_ratio:.2f}, Brightness={roi_brightness:.2f}")
if valid_contours:
contour, _ = max(valid_contours, key=lambda x: x[1])
x, y, w, h = cv2.boundingRect(contour)
padding = max(25, min(70, int(min(w, h) * 0.5)))
x, y = max(0, x - padding), max(0, y - padding)
w, h = min(w + 2 * padding, img.shape[1] - x), min(h + 2 * padding, img.shape[0] - y)
roi_img = img[y:y+h, x:x+w]
save_debug_image(roi_img, "06_detected_roi")
logging.info(f"Detected ROI: ({x}, {y}, {w}, {h})")
return roi_img, (x, y, w, h)
logging.info("No ROI found, using full image.")
save_debug_image(img, "06_no_roi_fallback")
return img, None
except Exception as e:
logging.error(f"ROI detection failed: {str(e)}")
save_debug_image(img, "06_roi_error_fallback")
return img, None
def detect_digit_contour(digit_img, brightness):
"""Simplified contour-based digit recognition."""
try:
h, w = digit_img.shape
if h < 20 or w < 10:
logging.debug("Digit image too small for contour detection.")
return None
# Normalize image
pixel_count = np.sum(digit_img == 255)
total_pixels = digit_img.size
density = pixel_count / total_pixels
if density < 0.1 or density > 0.8:
return None
# Contour analysis
contours, _ = cv2.findContours(digit_img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
if not contours:
return None
contour = max(contours, key=cv2.contourArea)
x, y, cw, ch = cv2.boundingRect(contour)
if cw < 5 or ch < 10:
return None
aspect = cw / ch
area_ratio = cv2.contourArea(contour) / (cw * ch)
# Simplified digit patterns
if aspect > 0.2 and aspect < 0.4 and area_ratio > 0.5:
return '1'
elif aspect > 0.5 and area_ratio > 0.6:
if density > 0.5:
return '8'
elif density > 0.3:
return '0'
elif aspect > 0.4 and area_ratio > 0.5:
if density > 0.4:
return '3'
elif density > 0.3:
return '2'
elif aspect > 0.3 and area_ratio > 0.4:
return '5' if density > 0.3 else '7'
elif aspect > 0.2 and area_ratio > 0.3:
return '4' if density > 0.2 else '9'
return None
except Exception as e:
logging.error(f"Contour digit detection failed: {str(e)}")
return None
def perform_ocr(img, roi_bbox):
"""Perform OCR with Tesseract and contour-based fallback."""
try:
thresh, enhanced = preprocess_image(img)
brightness = estimate_brightness(img)
pil_img = Image.fromarray(enhanced)
save_debug_image(pil_img, "07_ocr_input")
# Tesseract with aggressive numeric config
custom_config = r'--oem 3 --psm 7 -c tessedit_char_whitelist=0123456789.'
text = pytesseract.image_to_string(pil_img, config=custom_config)
logging.info(f"Tesseract raw output: {text}")
# Clean and validate
text = re.sub(r"[^\d\.]", "", text)
if text.count('.') > 1:
text = text.replace('.', '', text.count('.') - 1)
text = text.strip('.')
if text and re.fullmatch(r"^\d*\.?\d*$", text):
text = text.lstrip('0') or '0'
confidence = 98.0 if len(text.replace('.', '')) >= 3 else 95.0
logging.info(f"Validated Tesseract text: {text}, Confidence: {confidence:.2f}%")
return text, confidence
# Fallback to contour-based detection
logging.info("Tesseract failed, using contour-based detection.")
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
digits_info = []
for c in contours:
x, y, w, h = cv2.boundingRect(c)
if w > 15 and h > 20 and 0.2 <= w/h <= 1.2:
digits_info.append((x, x+w, y, y+h))
if digits_info:
digits_info.sort(key=lambda x: x[0])
recognized_text = ""
prev_x_max = -float('inf')
for idx, (x_min, x_max, y_min, y_max) in enumerate(digits_info):
x_min, y_min = max(0, x_min), max(0, y_min)
x_max, y_max = min(thresh.shape[1], x_max), min(thresh.shape[0], y_max)
if x_max <= x_min or y_max <= y_min:
continue
digit_crop = thresh[y_min:y_max, x_min:x_max]
save_debug_image(digit_crop, f"08_digit_crop_{idx}")
digit = detect_digit_contour(digit_crop, brightness)
if digit:
recognized_text += digit
elif x_min - prev_x_max < 15 and prev_x_max != -float('inf'):
recognized_text += '.'
prev_x_max = x_max
text = re.sub(r"[^\d\.]", "", recognized_text)
if text.count('.') > 1:
text = text.replace('.', '', text.count('.') - 1)
text = text.strip('.')
if text and re.fullmatch(r"^\d*\.?\d*$", text):
text = text.lstrip('0') or '0'
confidence = 92.0 if len(text.replace('.', '')) >= 3 else 90.0
logging.info(f"Validated contour text: {text}, Confidence: {confidence:.2f}%")
return text, confidence
logging.info("No valid digits detected.")
return None, 0.0
except Exception as e:
logging.error(f"OCR failed: {str(e)}")
return None, 0.0
def extract_weight_from_image(pil_img):
"""Extract weight from a digital scale image."""
try:
img = np.array(pil_img)
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
save_debug_image(img, "00_input_image")
img = correct_rotation(img)
brightness = estimate_brightness(img)
conf_threshold = 0.9 if brightness > 100 else 0.7
roi_img, roi_bbox = detect_roi(img)
if roi_bbox:
conf_threshold *= 1.15 if (roi_bbox[2] * roi_bbox[3]) > (img.shape[0] * img.shape[1] * 0.3) else 1.0
result, confidence = perform_ocr(roi_img, roi_bbox)
if result and confidence >= conf_threshold * 100:
try:
weight = float(result)
if 0.01 <= weight <= 1000:
logging.info(f"Detected weight: {result} kg, Confidence: {confidence:.2f}%")
return result, confidence
logging.warning(f"Weight {result} out of range.")
except ValueError:
logging.warning(f"Invalid weight format: {result}")
logging.info("Primary OCR failed, using full image fallback.")
result, confidence = perform_ocr(img, None)
if result and confidence >= conf_threshold * 0.95 * 100:
try:
weight = float(result)
if 0.01 <= weight <= 1000:
logging.info(f"Full image weight: {result} kg, Confidence: {confidence:.2f}%")
return result, confidence
logging.warning(f"Full image weight {result} out of range.")
except ValueError:
logging.warning(f"Invalid full image weight format: {result}")
logging.info("No valid weight detected.")
return "Not detected", 0.0
except Exception as e:
logging.error(f"Weight extraction failed: {str(e)}")
return "Not detected", 0.0