Spaces:
Running
Running
import pytesseract | |
import numpy as np | |
import cv2 | |
import re | |
import logging | |
from datetime import datetime | |
import os | |
from PIL import Image | |
# Set up logging | |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') | |
# Directory for debug images | |
DEBUG_DIR = "debug_images" | |
os.makedirs(DEBUG_DIR, exist_ok=True) | |
def save_debug_image(img, filename_suffix, prefix=""): | |
"""Save image to debug directory with timestamp.""" | |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f") | |
filename = os.path.join(DEBUG_DIR, f"{prefix}{timestamp}_{filename_suffix}.png") | |
if isinstance(img, Image.Image): | |
img.save(filename) | |
elif len(img.shape) == 3: | |
cv2.imwrite(filename, cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) | |
else: | |
cv2.imwrite(filename, img) | |
logging.info(f"Saved debug image: {filename}") | |
def estimate_brightness(img): | |
"""Estimate image brightness.""" | |
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) | |
return np.mean(gray) | |
def preprocess_image(img): | |
"""Preprocess image for OCR with aggressive contrast and noise reduction.""" | |
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) | |
brightness = estimate_brightness(img) | |
# Aggressive CLAHE | |
clahe_clip = 6.0 if brightness < 80 else 4.0 | |
clahe = cv2.createCLAHE(clipLimit=clahe_clip, tileGridSize=(8, 8)) | |
enhanced = clahe.apply(gray) | |
save_debug_image(enhanced, "01_preprocess_clahe") | |
# Minimal blur to preserve edges | |
blurred = cv2.GaussianBlur(enhanced, (3, 3), 0) | |
save_debug_image(blurred, "02_preprocess_blur") | |
# Multi-scale thresholding | |
block_size = max(9, min(25, int(img.shape[0] / 20) * 2 + 1)) | |
thresh = cv2.adaptiveThreshold(blurred, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, | |
cv2.THRESH_BINARY_INV, block_size, 7) | |
# Morphological operations | |
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3)) | |
thresh = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=2) | |
thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel, iterations=3) | |
save_debug_image(thresh, "03_preprocess_morph") | |
return thresh, enhanced | |
def correct_rotation(img): | |
"""Correct image rotation using edge detection.""" | |
try: | |
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) | |
edges = cv2.Canny(gray, 30, 100, apertureSize=3) | |
lines = cv2.HoughLinesP(edges, 1, np.pi / 180, threshold=40, minLineLength=20, maxLineGap=10) | |
if lines is not None: | |
angles = [np.arctan2(line[0][3] - line[0][1], line[0][2] - line[0][0]) * 180 / np.pi for line in lines] | |
angle = np.median(angles) | |
if abs(angle) > 0.5: | |
h, w = img.shape[:2] | |
center = (w // 2, h // 2) | |
M = cv2.getRotationMatrix2D(center, angle, 1.0) | |
img = cv2.warpAffine(img, M, (w, h)) | |
save_debug_image(img, "00_rotated_image") | |
logging.info(f"Applied rotation: {angle:.2f} degrees") | |
return img | |
except Exception as e: | |
logging.error(f"Rotation correction failed: {str(e)}") | |
return img | |
def detect_roi(img): | |
"""Detect region of interest with aggressive contour filtering.""" | |
try: | |
save_debug_image(img, "04_original") | |
thresh, enhanced = preprocess_image(img) | |
brightness_map = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) | |
block_sizes = [max(9, min(25, int(img.shape[0] / s) * 2 + 1)) for s in [10, 15, 20]] | |
valid_contours = [] | |
img_area = img.shape[0] * img.shape[1] | |
for block_size in block_sizes: | |
temp_thresh = cv2.adaptiveThreshold(enhanced, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, | |
cv2.THRESH_BINARY_INV, block_size, 7) | |
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5)) | |
temp_thresh = cv2.morphologyEx(temp_thresh, cv2.MORPH_CLOSE, kernel, iterations=3) | |
save_debug_image(temp_thresh, f"05_roi_threshold_block{block_size}") | |
contours, _ = cv2.findContours(temp_thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) | |
for c in contours: | |
area = cv2.contourArea(c) | |
x, y, w, h = cv2.boundingRect(c) | |
roi_brightness = np.mean(brightness_map[y:y+h, x:x+w]) | |
aspect_ratio = w / h | |
if (500 < area < (img_area * 0.5) and | |
0.5 <= aspect_ratio <= 6.0 and w > 80 and h > 40 and roi_brightness > 60): | |
valid_contours.append((c, area * roi_brightness)) | |
logging.debug(f"Contour (block {block_size}): Area={area}, Aspect={aspect_ratio:.2f}, Brightness={roi_brightness:.2f}") | |
if valid_contours: | |
contour, _ = max(valid_contours, key=lambda x: x[1]) | |
x, y, w, h = cv2.boundingRect(contour) | |
padding = max(25, min(70, int(min(w, h) * 0.5))) | |
x, y = max(0, x - padding), max(0, y - padding) | |
w, h = min(w + 2 * padding, img.shape[1] - x), min(h + 2 * padding, img.shape[0] - y) | |
roi_img = img[y:y+h, x:x+w] | |
save_debug_image(roi_img, "06_detected_roi") | |
logging.info(f"Detected ROI: ({x}, {y}, {w}, {h})") | |
return roi_img, (x, y, w, h) | |
logging.info("No ROI found, using full image.") | |
save_debug_image(img, "06_no_roi_fallback") | |
return img, None | |
except Exception as e: | |
logging.error(f"ROI detection failed: {str(e)}") | |
save_debug_image(img, "06_roi_error_fallback") | |
return img, None | |
def detect_digit_contour(digit_img, brightness): | |
"""Simplified contour-based digit recognition.""" | |
try: | |
h, w = digit_img.shape | |
if h < 20 or w < 10: | |
logging.debug("Digit image too small for contour detection.") | |
return None | |
# Normalize image | |
pixel_count = np.sum(digit_img == 255) | |
total_pixels = digit_img.size | |
density = pixel_count / total_pixels | |
if density < 0.1 or density > 0.8: | |
return None | |
# Contour analysis | |
contours, _ = cv2.findContours(digit_img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) | |
if not contours: | |
return None | |
contour = max(contours, key=cv2.contourArea) | |
x, y, cw, ch = cv2.boundingRect(contour) | |
if cw < 5 or ch < 10: | |
return None | |
aspect = cw / ch | |
area_ratio = cv2.contourArea(contour) / (cw * ch) | |
# Simplified digit patterns | |
if aspect > 0.2 and aspect < 0.4 and area_ratio > 0.5: | |
return '1' | |
elif aspect > 0.5 and area_ratio > 0.6: | |
if density > 0.5: | |
return '8' | |
elif density > 0.3: | |
return '0' | |
elif aspect > 0.4 and area_ratio > 0.5: | |
if density > 0.4: | |
return '3' | |
elif density > 0.3: | |
return '2' | |
elif aspect > 0.3 and area_ratio > 0.4: | |
return '5' if density > 0.3 else '7' | |
elif aspect > 0.2 and area_ratio > 0.3: | |
return '4' if density > 0.2 else '9' | |
return None | |
except Exception as e: | |
logging.error(f"Contour digit detection failed: {str(e)}") | |
return None | |
def perform_ocr(img, roi_bbox): | |
"""Perform OCR with Tesseract and contour-based fallback.""" | |
try: | |
thresh, enhanced = preprocess_image(img) | |
brightness = estimate_brightness(img) | |
pil_img = Image.fromarray(enhanced) | |
save_debug_image(pil_img, "07_ocr_input") | |
# Tesseract with aggressive numeric config | |
custom_config = r'--oem 3 --psm 7 -c tessedit_char_whitelist=0123456789.' | |
text = pytesseract.image_to_string(pil_img, config=custom_config) | |
logging.info(f"Tesseract raw output: {text}") | |
# Clean and validate | |
text = re.sub(r"[^\d\.]", "", text) | |
if text.count('.') > 1: | |
text = text.replace('.', '', text.count('.') - 1) | |
text = text.strip('.') | |
if text and re.fullmatch(r"^\d*\.?\d*$", text): | |
text = text.lstrip('0') or '0' | |
confidence = 98.0 if len(text.replace('.', '')) >= 3 else 95.0 | |
logging.info(f"Validated Tesseract text: {text}, Confidence: {confidence:.2f}%") | |
return text, confidence | |
# Fallback to contour-based detection | |
logging.info("Tesseract failed, using contour-based detection.") | |
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) | |
digits_info = [] | |
for c in contours: | |
x, y, w, h = cv2.boundingRect(c) | |
if w > 15 and h > 20 and 0.2 <= w/h <= 1.2: | |
digits_info.append((x, x+w, y, y+h)) | |
if digits_info: | |
digits_info.sort(key=lambda x: x[0]) | |
recognized_text = "" | |
prev_x_max = -float('inf') | |
for idx, (x_min, x_max, y_min, y_max) in enumerate(digits_info): | |
x_min, y_min = max(0, x_min), max(0, y_min) | |
x_max, y_max = min(thresh.shape[1], x_max), min(thresh.shape[0], y_max) | |
if x_max <= x_min or y_max <= y_min: | |
continue | |
digit_crop = thresh[y_min:y_max, x_min:x_max] | |
save_debug_image(digit_crop, f"08_digit_crop_{idx}") | |
digit = detect_digit_contour(digit_crop, brightness) | |
if digit: | |
recognized_text += digit | |
elif x_min - prev_x_max < 15 and prev_x_max != -float('inf'): | |
recognized_text += '.' | |
prev_x_max = x_max | |
text = re.sub(r"[^\d\.]", "", recognized_text) | |
if text.count('.') > 1: | |
text = text.replace('.', '', text.count('.') - 1) | |
text = text.strip('.') | |
if text and re.fullmatch(r"^\d*\.?\d*$", text): | |
text = text.lstrip('0') or '0' | |
confidence = 92.0 if len(text.replace('.', '')) >= 3 else 90.0 | |
logging.info(f"Validated contour text: {text}, Confidence: {confidence:.2f}%") | |
return text, confidence | |
logging.info("No valid digits detected.") | |
return None, 0.0 | |
except Exception as e: | |
logging.error(f"OCR failed: {str(e)}") | |
return None, 0.0 | |
def extract_weight_from_image(pil_img): | |
"""Extract weight from a digital scale image.""" | |
try: | |
img = np.array(pil_img) | |
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) | |
save_debug_image(img, "00_input_image") | |
img = correct_rotation(img) | |
brightness = estimate_brightness(img) | |
conf_threshold = 0.9 if brightness > 100 else 0.7 | |
roi_img, roi_bbox = detect_roi(img) | |
if roi_bbox: | |
conf_threshold *= 1.15 if (roi_bbox[2] * roi_bbox[3]) > (img.shape[0] * img.shape[1] * 0.3) else 1.0 | |
result, confidence = perform_ocr(roi_img, roi_bbox) | |
if result and confidence >= conf_threshold * 100: | |
try: | |
weight = float(result) | |
if 0.01 <= weight <= 1000: | |
logging.info(f"Detected weight: {result} kg, Confidence: {confidence:.2f}%") | |
return result, confidence | |
logging.warning(f"Weight {result} out of range.") | |
except ValueError: | |
logging.warning(f"Invalid weight format: {result}") | |
logging.info("Primary OCR failed, using full image fallback.") | |
result, confidence = perform_ocr(img, None) | |
if result and confidence >= conf_threshold * 0.95 * 100: | |
try: | |
weight = float(result) | |
if 0.01 <= weight <= 1000: | |
logging.info(f"Full image weight: {result} kg, Confidence: {confidence:.2f}%") | |
return result, confidence | |
logging.warning(f"Full image weight {result} out of range.") | |
except ValueError: | |
logging.warning(f"Invalid full image weight format: {result}") | |
logging.info("No valid weight detected.") | |
return "Not detected", 0.0 | |
except Exception as e: | |
logging.error(f"Weight extraction failed: {str(e)}") | |
return "Not detected", 0.0 |