AutoWeightLogger1 / ocr_engine.py
Sanjayraju30's picture
Update ocr_engine.py
8254c9e verified
raw
history blame
17.5 kB
import easyocr
import numpy as np
import cv2
import re
import logging
from datetime import datetime
import os
# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# Initialize EasyOCR
easyocr_reader = easyocr.Reader(['en'], gpu=False)
# Directory for debug images
DEBUG_DIR = "debug_images"
os.makedirs(DEBUG_DIR, exist_ok=True)
def save_debug_image(img, filename_suffix, prefix=""):
"""Save image to debug directory with timestamp."""
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f")
filename = os.path.join(DEBUG_DIR, f"{prefix}{timestamp}_{filename_suffix}.png")
if len(img.shape) == 3:
cv2.imwrite(filename, img)
else:
cv2.imwrite(filename, img)
logging.info(f"Saved debug image: {filename}")
def estimate_brightness(img):
"""Estimate image brightness."""
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
return np.mean(gray)
def preprocess_image(img):
"""Preprocess image for OCR."""
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
denoised = cv2.bilateralFilter(gray, 5, 8, 8)
save_debug_image(denoised, "01_preprocess_bilateral")
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
enhanced = clahe.apply(denoised)
save_debug_image(enhanced, "02_preprocess_clahe")
return enhanced
def correct_rotation(img):
"""Correct image rotation."""
try:
edges = cv2.Canny(cv2.cvtColor(img, cv2.COLOR_BGR2GRAY), 50, 150)
lines = cv2.HoughLinesP(edges, 1, np.pi / 180, threshold=50, minLineLength=30, maxLineGap=10)
if lines is not None:
angles = [np.arctan2(line[0][3] - line[0][1], line[0][2] - line[0][0]) * 180 / np.pi for line in lines]
angle = np.median(angles)
if abs(angle) > 2:
h, w = img.shape[:2]
center = (w // 2, h // 2)
M = cv2.getRotationMatrix2D(center, angle, 1.0)
img = cv2.warpAffine(img, M, (w, h))
save_debug_image(img, "00_rotated_image")
logging.info(f"Applied rotation: {angle:.2f} degrees")
return img
except Exception as e:
logging.error(f"Rotation correction failed: {str(e)}")
return img
def detect_roi(img):
"""Detect region of interest (display)."""
try:
save_debug_image(img, "03_original")
preprocessed = preprocess_image(img)
brightness_map = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
block_size = max(9, min(31, int(img.shape[0] / 25) * 2 + 1))
thresh = cv2.adaptiveThreshold(preprocessed, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY_INV, block_size, 2)
save_debug_image(thresh, "04_roi_threshold")
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
if contours:
img_area = img.shape[0] * img.shape[1]
valid_contours = []
for c in contours:
area = cv2.contourArea(c)
x, y, w, h = cv2.boundingRect(c)
roi_brightness = np.mean(brightness_map[y:y+h, x:x+w])
aspect_ratio = w / h
if (50 < area < (img_area * 0.95) and
0.2 <= aspect_ratio <= 30.0 and w > 30 and h > 10 and roi_brightness > 30):
valid_contours.append((c, roi_brightness))
logging.debug(f"Contour: Area={area}, Aspect={aspect_ratio:.2f}, Brightness={roi_brightness:.2f}")
if valid_contours:
contour, _ = max(valid_contours, key=lambda x: x[1])
x, y, w, h = cv2.boundingRect(contour)
padding = 200
x, y = max(0, x - padding), max(0, y - padding)
w, h = min(w + 2 * padding, img.shape[1] - x), min(h + 2 * padding, img.shape[0] - y)
roi_img = img[y:y+h, x:x+w]
save_debug_image(roi_img, "05_detected_roi")
logging.info(f"Detected ROI: ({x}, {y}, {w}, {h})")
return roi_img, (x, y, w, h)
logging.info("No ROI found, using full image.")
save_debug_image(img, "05_no_roi_fallback")
return img, None
except Exception as e:
logging.error(f"ROI detection failed: {str(e)}")
save_debug_image(img, "05_roi_error_fallback")
return img, None
def detect_segments(digit_img, brightness):
"""Detect seven-segment digits."""
h, w = digit_img.shape
if h < 5 or w < 3:
return None
segments = {
'top': (int(w*0.1), int(w*0.9), 0, int(h*0.25)),
'middle': (int(w*0.1), int(w*0.9), int(h*0.45), int(h*0.55)),
'bottom': (int(w*0.1), int(w*0.9), int(h*0.75), h),
'left_top': (0, int(w*0.3), int(h*0.1), int(h*0.5)),
'left_bottom': (0, int(w*0.3), int(h*0.5), int(h*0.9)),
'right_top': (int(w*0.7), w, int(h*0.1), int(h*0.5)),
'right_bottom': (int(w*0.7), w, int(h*0.5), int(h*0.9))
}
segment_presence = {}
for name, (x1, x2, y1, y2) in segments.items():
x1, y1 = max(0, x1), max(0, y1)
x2, y2 = min(w, x2), min(h, y2)
region = digit_img[y1:y2, x1:x2]
if region.size == 0:
segment_presence[name] = False
continue
pixel_count = np.sum(region == 255)
total_pixels = region.size
segment_presence[name] = pixel_count / total_pixels > (0.1 if brightness < 80 else 0.25)
digit_patterns = {
'0': ('top', 'bottom', 'left_top', 'left_bottom', 'right_top', 'right_bottom'),
'1': ('right_top', 'right_bottom'),
'2': ('top', 'middle', 'bottom', 'left_bottom', 'right_top'),
'3': ('top', 'middle', 'bottom', 'right_top', 'right_bottom'),
'4': ('middle', 'left_top', 'right_top', 'right_bottom'),
'5': ('top', 'middle', 'bottom', 'left_top', 'right_bottom'),
'6': ('top', 'middle', 'bottom', 'left_top', 'left_bottom', 'right_bottom'),
'7': ('top', 'right_top', 'right_bottom'),
'8': ('top', 'middle', 'bottom', 'left_top', 'left_bottom', 'right_top', 'right_bottom'),
'9': ('top', 'middle', 'bottom', 'left_top', 'right_top', 'right_bottom')
}
best_match = None
max_score = -1
for digit, pattern in digit_patterns.items():
matches = sum(1 for segment in pattern if segment_presence.get(segment, False))
non_matches_penalty = sum(1 for segment in segment_presence if segment not in pattern and segment_presence[segment])
score = matches - 0.1 * non_matches_penalty
if matches >= len(pattern) * 0.55:
score += 1.0
if score > max_score:
max_score = score
best_match = digit
logging.debug(f"Segment presence: {segment_presence}, Digit: {best_match}")
return best_match
def custom_seven_segment_ocr(img, roi_bbox):
"""Perform OCR for seven-segment displays."""
try:
preprocessed = preprocess_image(img)
brightness = estimate_brightness(img)
_, thresh = cv2.threshold(preprocessed, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
save_debug_image(thresh, "06_roi_thresh_digits")
results = easyocr_reader.readtext(thresh, detail=1, paragraph=False,
contrast_ths=0.05, adjust_contrast=1.2,
text_threshold=0.15, mag_ratio=4.0,
allowlist='0123456789.', batch_size=2, y_ths=0.3)
logging.info(f"EasyOCR results: {results}")
if not results:
logging.info("No digits found.")
return None
digits_info = []
for (bbox, text, conf) in results:
(x1, y1), (x2, y2), (x3, y3), (x4, y4) = bbox
h_bbox = max(y1, y2, y3, y4) - min(y1, y2, y3, y4)
if (text.isdigit() or text == '.') and h_bbox > 4:
x_min, x_max = int(min(x1, x4)), int(max(x2, x3))
y_min, y_max = int(min(y1, y2)), int(max(y3, y4))
digits_info.append((x_min, x_max, y_min, y_max, text, conf))
digits_info.sort(key=lambda x: x[0])
recognized_text = ""
for idx, (x_min, x_max, y_min, y_max, easyocr_char, easyocr_conf) in enumerate(digits_info):
x_min, y_min = max(0, x_min), max(0, y_min)
x_max, y_max = min(thresh.shape[1], x_max), min(thresh.shape[0], y_max)
if x_max <= x_min or y_max <= y_min:
continue
digit_img_crop = thresh[y_min:y_max, x_min:x_max]
save_debug_image(digit_img_crop, f"07_digit_crop_{idx}_{easyocr_char}")
if easyocr_conf > 0.8 or easyocr_char == '.':
recognized_text += easyocr_char
else:
digit_from_segments = detect_segments(digit_img_crop, brightness)
recognized_text += digit_from_segments if digit_from_segments else easyocr_char
logging.info(f"Recognized text: {recognized_text}")
text = re.sub(r"[^\d\.]", "", recognized_text)
if text.count('.') > 1:
text = text.replace('.', '', text.count('.') - 1)
if text and re.fullmatch(r"^\d*\.?\d*$", text):
text = text.strip('.')
if text == '':
return None
return text.lstrip('0') or '0'
logging.info(f"Text '{recognized_text}' failed validation.")
return None
except Exception as e:
logging.error(f"Seven-segment OCR failed: {str(e)}")
return None
def extract_weight_from_image(pil_img):
"""Extract weight from a digital scale image."""
try:
img = np.array(pil_img)
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
save_debug_image(img, "00_input_image")
img = correct_rotation(img)
brightness = estimate_brightness(img)
conf_threshold = 0.6 if brightness > 150 else (0.4 if brightness > 80 else 0.2)
roi_img, roi_bbox = detect_roi(img)
if roi_bbox:
conf_threshold *= 1.05 if (roi_bbox[2] * roi_bbox[3]) > (img.shape[0] * img.shape[1] * 0.5) else 1.0
custom_result = custom_seven_segment_ocr(roi_img, roi_bbox)
if custom_result and custom_result != '0':
try:
weight = float(custom_result)
if 0.00001 <= weight <= 10000:
logging.info(f"Custom OCR: {custom_result}, Confidence: 90.0%")
return custom_result, 90.0
logging.warning(f"Custom OCR {custom_result} out of range.")
except ValueError:
logging.warning(f"Custom OCR '{custom_result}' invalid number.")
logging.info("Custom OCR failed, using EasyOCR fallback.")
preprocessed_roi = preprocess_image(roi_img)
final_roi = cv2.adaptiveThreshold(preprocessed_roi, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY_INV, max(9, min(31, int(roi_img.shape[0] / 25) * 2 + 1)), 2)
save_debug_image(final_roi, "08_fallback_thresh")
results = easyocr_reader.readtext(final_roi, detail=1, paragraph=False,
contrast_ths=0.05, adjust_contrast=1.2,
text_threshold=0.15, mag_ratio=4.0,
allowlist='0123456789. kglb', batch_size=2, y_ths=0.3)
if not results:
logging.info("First EasyOCR pass failed, trying fallback.")
results = easyocr_reader.readtext(final_roi, detail=1, paragraph=False,
contrast_ths=0.02, adjust_contrast=1.5,
text_threshold=0.1, mag_ratio=5.0,
allowlist='0123456789. kglb', batch_size=2, y_ths=0.3)
save_debug_image(final_roi, "08_fallback_thresh_fallback")
logging.info(f"EasyOCR results: {results}")
candidates = []
unit = None
for (bbox, text, conf) in results:
if 'kg' in text.lower():
unit = 'kg'
continue
elif 'g' in text.lower():
unit = 'g'
continue
elif 'lb' in text.lower():
unit = 'lb'
continue
text = re.sub(r"[^\d\.]", "", text)
if text.count('.') > 1:
text = text.replace('.', '', text.count('.') - 1)
text = text.strip('.')
if re.fullmatch(r"^\d*\.?\d*$", text):
try:
weight = float(text)
if unit == 'g':
weight /= 1000
elif unit == 'lb':
weight *= 0.453592
range_score = 1.5 if 0.00001 <= weight <= 10000 else 0.5
digit_count = len(text.replace('.', ''))
digit_score = 1.4 if 1 <= digit_count <= 8 else 0.6
score = conf * range_score * digit_score
if roi_bbox:
x_roi, y_roi, w_roi, h_roi = roi_bbox
roi_area = w_roi * h_roi
x_min, y_min = int(min(b[0] for b in bbox)), int(min(b[1] for b in bbox))
x_max, y_max = int(max(b[0] for b in bbox)), int(max(b[1] for b in bbox))
bbox_area = (x_max - x_min) * (y_max - y_min)
if roi_area > 0 and bbox_area / roi_area < 0.02:
score *= 0.4
candidates.append((text, conf, score, unit))
logging.info(f"Candidate: '{text}', Unit: {unit or 'none'}, Conf: {conf}, Score: {score}")
except ValueError:
logging.warning(f"Could not convert '{text}' to float.")
if not candidates and not roi_bbox:
logging.info("No candidates, trying full image.")
preprocessed_full = preprocess_image(img)
final_full = cv2.adaptiveThreshold(preprocessed_full, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY_INV, max(9, min(31, int(img.shape[0] / 25) * 2 + 1)), 2)
save_debug_image(final_full, "08_fallback_full")
results = easyocr_reader.readtext(final_full, detail=1, paragraph=False,
contrast_ths=0.05, adjust_contrast=1.5,
text_threshold=0.15, mag_ratio=4.0,
allowlist='0123456789. kglb', batch_size=2, y_ths=0.3)
logging.info(f"Full image EasyOCR: {results}")
for (bbox, text, conf) in results:
if 'kg' in text.lower():
unit = 'kg'
continue
elif 'g' in text.lower():
unit = 'g'
continue
elif 'lb' in text.lower():
unit = 'lb'
continue
text = re.sub(r"[^\d\.]", "", text)
if text.count('.') > 1:
text = text.replace('.', '', text.count('.') - 1)
text = text.strip('.')
if re.fullmatch(r"^\d*\.?\d*$", text):
try:
weight = float(text)
if unit == 'g':
weight /= 1000
elif unit == 'lb':
weight *= 0.453592
range_score = 1.2 if 0.00001 <= weight <= 10000 else 0.4
digit_count = len(text.replace('.', ''))
digit_score = 1.2 if 1 <= digit_count <= 8 else 0.5
score = conf * range_score * digit_score * 0.7
candidates.append((text, conf, score, unit))
logging.info(f"Full image candidate: '{text}', Unit: {unit or 'none'}, Conf: {conf}, Score: {score}")
except ValueError:
logging.warning(f"Could not convert '{text}' to float (full image).")
if not candidates:
logging.info("No valid weight detected.")
return "Not detected", 0.0
best_weight, best_conf, best_score, best_unit = max(candidates, key=lambda x: x[2])
if "." in best_weight:
int_part, dec_part = best_weight.split(".")
int_part = int_part.lstrip("0") or "0"
dec_part = dec_part.rstrip('0')
best_weight = f"{int_part}.{dec_part}" if dec_part else int_part
else:
best_weight = best_weight.lstrip('0') or "0"
try:
final_weight = float(best_weight)
if final_weight < 0.00001 or final_weight > 10000:
best_conf *= 0.4
elif final_weight == 0 and best_conf < 0.95:
best_conf *= 0.5
except ValueError:
pass
logging.info(f"Final weight: {best_weight} kg, Confidence: {round(best_conf * 100, 2)}%, Unit: {best_unit or 'none'}")
return best_weight, round(best_conf * 100, 2)
except Exception as e:
logging.error(f"Weight extraction failed: {str(e)}")
return "Not detected", 0.0