Spaces:
Sleeping
Sleeping
Update ocr_engine.py
Browse files- ocr_engine.py +40 -262
ocr_engine.py
CHANGED
@@ -3,286 +3,64 @@ import numpy as np
|
|
3 |
import cv2
|
4 |
import re
|
5 |
import logging
|
6 |
-
from datetime import datetime
|
7 |
-
import os
|
8 |
from PIL import Image
|
9 |
|
10 |
# Set up logging
|
11 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
os.makedirs(DEBUG_DIR, exist_ok=True)
|
16 |
-
|
17 |
-
def save_debug_image(img, filename_suffix, prefix=""):
|
18 |
-
"""Save image to debug directory with timestamp."""
|
19 |
-
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f")
|
20 |
-
filename = os.path.join(DEBUG_DIR, f"{prefix}{timestamp}_{filename_suffix}.png")
|
21 |
-
if isinstance(img, Image.Image):
|
22 |
-
img.save(filename)
|
23 |
-
elif len(img.shape) == 3:
|
24 |
-
cv2.imwrite(filename, cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
|
25 |
-
else:
|
26 |
-
cv2.imwrite(filename, img)
|
27 |
-
logging.info(f"Saved debug image: {filename}")
|
28 |
-
|
29 |
-
def estimate_brightness(img):
|
30 |
-
"""Estimate image brightness."""
|
31 |
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
32 |
-
|
33 |
|
34 |
-
|
35 |
-
"""Preprocess image with enhanced contrast and adaptive thresholding."""
|
36 |
-
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
37 |
-
brightness = estimate_brightness(img)
|
38 |
-
|
39 |
-
# Apply CLAHE with dynamic clip limit
|
40 |
-
clahe_clip = 10.0 if brightness < 80 else 5.0
|
41 |
-
clahe = cv2.createCLAHE(clipLimit=clahe_clip, tileGridSize=(8, 8))
|
42 |
-
enhanced = clahe.apply(gray)
|
43 |
-
save_debug_image(enhanced, "01_preprocess_clahe")
|
44 |
-
|
45 |
-
# Stronger blur to reduce noise
|
46 |
-
blurred = cv2.GaussianBlur(enhanced, (7, 7), 1.0)
|
47 |
-
save_debug_image(blurred, "02_preprocess_blur")
|
48 |
-
|
49 |
-
# Adaptive thresholding with larger block size
|
50 |
-
block_size = max(11, min(41, int(img.shape[0] / 15) * 2 + 1))
|
51 |
thresh = cv2.adaptiveThreshold(
|
52 |
-
blurred, 255,
|
53 |
-
cv2.
|
|
|
|
|
54 |
)
|
55 |
-
|
56 |
-
# Morphological operations for better digit separation
|
57 |
-
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
|
58 |
-
thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel, iterations=2)
|
59 |
-
save_debug_image(thresh, "03_preprocess_morph")
|
60 |
-
return thresh, enhanced
|
61 |
-
|
62 |
-
def correct_rotation(img):
|
63 |
-
"""Correct image rotation using edge detection."""
|
64 |
-
try:
|
65 |
-
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
66 |
-
edges = cv2.Canny(gray, 50, 150, apertureSize=3)
|
67 |
-
lines = cv2.HoughLinesP(edges, 1, np.pi / 180, threshold=20, minLineLength=10, maxLineGap=5)
|
68 |
-
if lines is not None:
|
69 |
-
angles = [np.arctan2(line[0][3] - line[0][1], line[0][2] - line[0][0]) * 180 / np.pi for line in lines]
|
70 |
-
angle = np.median(angles)
|
71 |
-
if abs(angle) > 0.5:
|
72 |
-
h, w = img.shape[:2]
|
73 |
-
center = (w // 2, h // 2)
|
74 |
-
M = cv2.getRotationMatrix2D(center, angle, 1.0)
|
75 |
-
img = cv2.warpAffine(img, M, (w, h))
|
76 |
-
save_debug_image(img, "00_rotated_image")
|
77 |
-
logging.info(f"Applied rotation: {angle:.2f} degrees")
|
78 |
-
return img
|
79 |
-
except Exception as e:
|
80 |
-
logging.error(f"Rotation correction failed: {str(e)}")
|
81 |
-
return img
|
82 |
-
|
83 |
-
def detect_roi(img):
|
84 |
-
"""Detect region of interest with relaxed contour analysis."""
|
85 |
-
try:
|
86 |
-
save_debug_image(img, "04_original")
|
87 |
-
thresh, enhanced = preprocess_image(img)
|
88 |
-
brightness_map = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
89 |
-
block_sizes = [max(11, min(41, int(img.shape[0] / s) * 2 + 1)) for s in [5, 10, 15]]
|
90 |
-
valid_contours = []
|
91 |
-
img_area = img.shape[0] * img.shape[1]
|
92 |
-
|
93 |
-
for block_size in block_sizes:
|
94 |
-
temp_thresh = cv2.adaptiveThreshold(
|
95 |
-
enhanced, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
|
96 |
-
cv2.THRESH_BINARY_INV, block_size, 5
|
97 |
-
)
|
98 |
-
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
|
99 |
-
temp_thresh = cv2.morphologyEx(temp_thresh, cv2.MORPH_CLOSE, kernel, iterations=2)
|
100 |
-
save_debug_image(temp_thresh, f"05_roi_threshold_block{block_size}")
|
101 |
-
contours, _ = cv2.findContours(temp_thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
102 |
-
|
103 |
-
for c in contours:
|
104 |
-
area = cv2.contourArea(c)
|
105 |
-
x, y, w, h = cv2.boundingRect(c)
|
106 |
-
roi_brightness = np.mean(brightness_map[y:y+h, x:x+w])
|
107 |
-
aspect_ratio = w / h
|
108 |
-
if (30 < area < (img_area * 0.98) and
|
109 |
-
0.02 <= aspect_ratio <= 25.0 and w > 15 and h > 5 and roi_brightness > 10):
|
110 |
-
valid_contours.append((c, area * roi_brightness))
|
111 |
-
logging.debug(f"Contour (block {block_size}): Area={area}, Aspect={aspect_ratio:.2f}, Brightness={roi_brightness:.2f}")
|
112 |
-
|
113 |
-
if valid_contours:
|
114 |
-
contour, _ = max(valid_contours, key=lambda x: x[1])
|
115 |
-
x, y, w, h = cv2.boundingRect(contour)
|
116 |
-
padding = max(5, min(25, int(min(w, h) * 0.5)))
|
117 |
-
x, y = max(0, x - padding), max(0, y - padding)
|
118 |
-
w, h = min(w + 2 * padding, img.shape[1] - x), min(h + 2 * padding, img.shape[0] - y)
|
119 |
-
roi_img = img[y:y+h, x:x+w]
|
120 |
-
save_debug_image(roi_img, "06_detected_roi")
|
121 |
-
logging.info(f"Detected ROI: ({x}, {y}, {w}, {h})")
|
122 |
-
return roi_img, (x, y, w, h)
|
123 |
-
|
124 |
-
logging.info("No ROI found, using full image.")
|
125 |
-
save_debug_image(img, "06_no_roi_fallback")
|
126 |
-
return img, None
|
127 |
-
except Exception as e:
|
128 |
-
logging.error(f"ROI detection failed: {str(e)}")
|
129 |
-
save_debug_image(img, "06_roi_error_fallback")
|
130 |
-
return img, None
|
131 |
-
|
132 |
-
def detect_digit_template(digit_img, brightness):
|
133 |
-
"""Digit recognition with adjusted template matching."""
|
134 |
-
try:
|
135 |
-
h, w = digit_img.shape
|
136 |
-
if h < 5 or w < 2:
|
137 |
-
logging.debug("Digit image too small for template matching.")
|
138 |
-
return None
|
139 |
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
'2': [np.array([[1, 1, 1, 1, 1], [0, 0, 0, 1, 1], [1, 1, 1, 1, 1], [1, 1, 0, 0, 0], [1, 1, 1, 1, 1]], dtype=np.float32)],
|
144 |
-
'3': [np.array([[1, 1, 1, 1, 1], [0, 0, 0, 1, 1], [1, 1, 1, 1, 1], [0, 0, 0, 1, 1], [1, 1, 1, 1, 1]], dtype=np.float32)],
|
145 |
-
'4': [np.array([[1, 1, 0, 0, 1], [1, 1, 0, 0, 1], [1, 1, 1, 1, 1], [0, 0, 0, 0, 1], [0, 0, 0, 0, 1]], dtype=np.float32)],
|
146 |
-
'5': [np.array([[1, 1, 1, 1, 1], [1, 1, 0, 0, 0], [1, 1, 1, 1, 1], [0, 0, 0, 1, 1], [1, 1, 1, 1, 1]], dtype=np.float32)],
|
147 |
-
'6': [np.array([[1, 1, 1, 1, 1], [1, 1, 0, 0, 0], [1, 1, 1, 1, 1], [1, 0, 0, 1, 1], [1, 1, 1, 1, 1]], dtype=np.float32)],
|
148 |
-
'7': [np.array([[1, 1, 1, 1, 1], [0, 0, 0, 0, 1], [0, 0, 0, 0, 1], [0, 0, 0, 0, 1], [0, 0, 0, 0, 1]], dtype=np.float32)],
|
149 |
-
'8': [np.array([[1, 1, 1, 1, 1], [1, 0, 0, 0, 1], [1, 1, 1, 1, 1], [1, 0, 0, 0, 1], [1, 1, 1, 1, 1]], dtype=np.float32)],
|
150 |
-
'9': [np.array([[1, 1, 1, 1, 1], [1, 0, 0, 0, 1], [1, 1, 1, 1, 1], [0, 0, 0, 1, 1], [1, 1, 1, 1, 1]], dtype=np.float32)],
|
151 |
-
'.': [np.array([[0, 0, 0], [0, 1, 0], [0, 0, 0]], dtype=np.float32)]
|
152 |
-
}
|
153 |
-
|
154 |
-
sizes = [(5, 5), (4, 4), (3, 3)] if h > w else [(3, 3), (2, 2)]
|
155 |
-
best_match, best_score = None, -1
|
156 |
-
for size in sizes:
|
157 |
-
digit_img_resized = cv2.resize(digit_img, size, interpolation=cv2.INTER_AREA)
|
158 |
-
digit_img_resized = (digit_img_resized > 90).astype(np.float32) # Adjusted binarization threshold
|
159 |
-
|
160 |
-
for digit, templates in digit_templates.items():
|
161 |
-
for template in templates:
|
162 |
-
if template.shape[0] != size[0] or template.shape[1] != size[1]:
|
163 |
-
continue
|
164 |
-
result = cv2.matchTemplate(digit_img_resized, template, cv2.TM_CCOEFF_NORMED)
|
165 |
-
_, max_val, _, _ = cv2.minMaxLoc(result)
|
166 |
-
if max_val > 0.50 and max_val > best_score: # Lowered threshold
|
167 |
-
best_score = max_val
|
168 |
-
best_match = digit
|
169 |
-
logging.debug(f"Template match: {best_match}, Score: {best_score:.2f}")
|
170 |
-
return best_match if best_score > 0.50 else None
|
171 |
-
except Exception as e:
|
172 |
-
logging.error(f"Template digit detection failed: {str(e)}")
|
173 |
-
return None
|
174 |
-
|
175 |
-
def perform_ocr(img, roi_bbox):
|
176 |
-
"""Perform OCR with enhanced Tesseract and template fallback."""
|
177 |
-
try:
|
178 |
-
thresh, enhanced = preprocess_image(img)
|
179 |
-
brightness = estimate_brightness(img)
|
180 |
-
pil_img = Image.fromarray(enhanced)
|
181 |
-
save_debug_image(pil_img, "07_ocr_input")
|
182 |
-
|
183 |
-
# Enhanced Tesseract configurations
|
184 |
-
configs = [
|
185 |
-
r'--oem 3 --psm 7 -c tessedit_char_whitelist=0123456789.', # Single line
|
186 |
-
r'--oem 3 --psm 6 -c tessedit_char_whitelist=0123456789.', # Block of text
|
187 |
-
r'--oem 3 --psm 10 -c tessedit_char_whitelist=0123456789.' # Single character
|
188 |
-
]
|
189 |
-
for config in configs:
|
190 |
-
text = pytesseract.image_to_string(pil_img, config=config)
|
191 |
-
logging.info(f"Tesseract raw output (config {config}): {text}")
|
192 |
-
text = re.sub(r"[^\d\.]", "", text)
|
193 |
-
if text.count('.') > 1:
|
194 |
-
text = text.replace('.', '', text.count('.') - 1)
|
195 |
-
text = text.strip('.')
|
196 |
-
if text and re.fullmatch(r"^\d*\.?\d*$", text):
|
197 |
-
text = text.lstrip('0') or '0'
|
198 |
-
confidence = 95.0 if len(text.replace('.', '')) >= 3 else 90.0
|
199 |
-
logging.info(f"Validated Tesseract text: {text}, Confidence: {confidence:.2f}%")
|
200 |
-
return text, confidence
|
201 |
-
|
202 |
-
# Enhanced template-based detection
|
203 |
-
logging.info("Tesseract failed, using template-based detection.")
|
204 |
-
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
205 |
-
digits_info = []
|
206 |
-
for c in contours:
|
207 |
-
x, y, w, h = cv2.boundingRect(c)
|
208 |
-
if w > 3 and h > 4 and 0.02 <= w/h <= 5.0:
|
209 |
-
digits_info.append((x, x+w, y, y+h))
|
210 |
-
|
211 |
-
if digits_info:
|
212 |
-
digits_info.sort(key=lambda x: x[0])
|
213 |
-
recognized_text = ""
|
214 |
-
prev_x_max = -float('inf')
|
215 |
-
for idx, (x_min, x_max, y_min, y_max) in enumerate(digits_info):
|
216 |
-
x_min, y_min = max(0, x_min), max(0, y_min)
|
217 |
-
x_max, y_max = min(thresh.shape[1], x_max), min(thresh.shape[0], y_max)
|
218 |
-
if x_max <= x_min or y_max <= y_min:
|
219 |
-
continue
|
220 |
-
digit_crop = thresh[y_min:y_max, x_min:x_max]
|
221 |
-
save_debug_image(digit_crop, f"08_digit_crop_{idx}")
|
222 |
-
digit = detect_digit_template(digit_crop, brightness)
|
223 |
-
if digit:
|
224 |
-
recognized_text += digit
|
225 |
-
elif x_min - prev_x_max < 15 and prev_x_max != -float('inf'):
|
226 |
-
recognized_text += '.'
|
227 |
-
prev_x_max = x_max
|
228 |
-
|
229 |
-
text = re.sub(r"[^\d\.]", "", recognized_text)
|
230 |
-
if text.count('.') > 1:
|
231 |
-
text = text.replace('.', '', text.count('.') - 1)
|
232 |
-
text = text.strip('.')
|
233 |
-
if text and re.fullmatch(r"^\d*\.?\d*$", text):
|
234 |
-
text = text.lstrip('0') or '0'
|
235 |
-
confidence = 90.0 if len(text.replace('.', '')) >= 3 else 85.0
|
236 |
-
logging.info(f"Validated template text: {text}, Confidence: {confidence:.2f}%")
|
237 |
-
return text, confidence
|
238 |
-
|
239 |
-
logging.info("No valid digits detected.")
|
240 |
-
return None, 0.0
|
241 |
-
except Exception as e:
|
242 |
-
logging.error(f"OCR failed: {str(e)}")
|
243 |
-
return None, 0.0
|
244 |
|
245 |
def extract_weight_from_image(pil_img):
|
246 |
-
"""Extract weight from
|
247 |
try:
|
|
|
248 |
img = np.array(pil_img)
|
249 |
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
|
250 |
-
save_debug_image(img, "00_input_image")
|
251 |
-
img = correct_rotation(img)
|
252 |
-
brightness = estimate_brightness(img)
|
253 |
-
conf_threshold = 0.60 if brightness > 70 else 0.40 # Lowered threshold
|
254 |
|
255 |
-
#
|
256 |
-
|
257 |
-
if roi_bbox:
|
258 |
-
conf_threshold *= 1.2 if (roi_bbox[2] * roi_bbox[3]) > (img.shape[0] * img.shape[1] * 0.03) else 1.0
|
259 |
|
260 |
-
|
261 |
-
|
262 |
-
try:
|
263 |
-
weight = float(result)
|
264 |
-
if 0.001 <= weight <= 5000:
|
265 |
-
logging.info(f"Detected weight: {result} kg, Confidence: {confidence:.2f}%")
|
266 |
-
return result, confidence
|
267 |
-
logging.warning(f"Weight {result} out of range.")
|
268 |
-
except ValueError:
|
269 |
-
logging.warning(f"Invalid weight format: {result}")
|
270 |
|
271 |
-
#
|
272 |
-
|
273 |
-
result, confidence = perform_ocr(img, None)
|
274 |
-
if result and confidence >= conf_threshold * 0.80 * 100:
|
275 |
-
try:
|
276 |
-
weight = float(result)
|
277 |
-
if 0.001 <= weight <= 5000:
|
278 |
-
logging.info(f"Full image weight: {result} kg, Confidence: {confidence:.2f}%")
|
279 |
-
return result, confidence
|
280 |
-
logging.warning(f"Full image weight {result} out of range.")
|
281 |
-
except ValueError:
|
282 |
-
logging.warning(f"Invalid full image weight format: {result}")
|
283 |
|
284 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
285 |
return "Not detected", 0.0
|
|
|
286 |
except Exception as e:
|
287 |
-
logging.error(f"
|
288 |
-
return "Not detected", 0.0
|
|
|
3 |
import cv2
|
4 |
import re
|
5 |
import logging
|
|
|
|
|
6 |
from PIL import Image
|
7 |
|
8 |
# Set up logging
|
9 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
10 |
|
11 |
+
def preprocess_for_ocr(img):
|
12 |
+
"""Apply grayscale, blur, and threshold to prepare image for OCR."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
14 |
+
blurred = cv2.GaussianBlur(gray, (5, 5), 0)
|
15 |
|
16 |
+
# Adaptive threshold
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
thresh = cv2.adaptiveThreshold(
|
18 |
+
blurred, 255,
|
19 |
+
cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
|
20 |
+
cv2.THRESH_BINARY,
|
21 |
+
11, 2
|
22 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
+
# Invert to make text white on black
|
25 |
+
inverted = cv2.bitwise_not(thresh)
|
26 |
+
return inverted
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
def extract_weight_from_image(pil_img):
|
29 |
+
"""Extract weight reading from an image using pytesseract."""
|
30 |
try:
|
31 |
+
# Convert PIL to OpenCV
|
32 |
img = np.array(pil_img)
|
33 |
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
|
|
|
|
|
|
|
|
|
34 |
|
35 |
+
# Preprocess
|
36 |
+
processed_img = preprocess_for_ocr(img)
|
|
|
|
|
37 |
|
38 |
+
# Tesseract config
|
39 |
+
config = r'--oem 3 --psm 7 -c tessedit_char_whitelist=0123456789.'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
+
# Run OCR
|
42 |
+
text = pytesseract.image_to_string(processed_img, config=config)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
+
# Clean text
|
45 |
+
text = text.strip().replace('\n', '').replace(' ', '')
|
46 |
+
text = re.sub(r"[^\d.]", "", text)
|
47 |
+
|
48 |
+
# Handle multiple dots
|
49 |
+
if text.count('.') > 1:
|
50 |
+
text = text.replace('.', '', text.count('.') - 1)
|
51 |
+
|
52 |
+
if text.startswith('.'):
|
53 |
+
text = '0' + text
|
54 |
+
|
55 |
+
# Validate
|
56 |
+
if text and re.fullmatch(r"\d*\.?\d*", text):
|
57 |
+
value = float(text)
|
58 |
+
if 0.001 <= value <= 5000:
|
59 |
+
return text, 90.0 # Return with fixed confidence
|
60 |
+
else:
|
61 |
+
logging.warning(f"Detected weight out of range: {value}")
|
62 |
return "Not detected", 0.0
|
63 |
+
|
64 |
except Exception as e:
|
65 |
+
logging.error(f"OCR error: {str(e)}")
|
66 |
+
return "Not detected", 0.0
|