Sanjayraju30 commited on
Commit
385a153
·
verified ·
1 Parent(s): 77a0d33

Update ocr_engine.py

Browse files
Files changed (1) hide show
  1. ocr_engine.py +7 -18
ocr_engine.py CHANGED
@@ -3,34 +3,28 @@ import numpy as np
3
  import cv2
4
  import re
5
 
6
- # Load EasyOCR reader
7
  reader = easyocr.Reader(['en'], gpu=False)
8
 
9
  def extract_weight_from_image(pil_img):
10
  try:
11
  img = np.array(pil_img)
12
 
13
- # Resize very large images
14
  max_dim = 1000
15
  height, width = img.shape[:2]
16
  if max(height, width) > max_dim:
17
  scale = max_dim / max(height, width)
18
  img = cv2.resize(img, None, fx=scale, fy=scale, interpolation=cv2.INTER_AREA)
19
 
20
- # OCR recognition
21
  results = reader.readtext(img)
22
- print("DEBUG OCR RESULTS:", results)
23
 
24
- raw_texts = []
25
  weight_candidates = []
26
  fallback_weight = None
27
  fallback_conf = 0.0
28
 
29
- for _, (text, conf) in results:
30
- original = text
31
  cleaned = text.lower().strip()
32
-
33
- # Fix common OCR misreads
34
  cleaned = cleaned.replace(",", ".")
35
  cleaned = cleaned.replace("o", "0").replace("O", "0")
36
  cleaned = cleaned.replace("s", "5").replace("S", "5")
@@ -38,26 +32,21 @@ def extract_weight_from_image(pil_img):
38
  cleaned = cleaned.replace("kg", "").replace("kgs", "")
39
  cleaned = re.sub(r"[^0-9\.]", "", cleaned)
40
 
41
- raw_texts.append(f"{original} → {cleaned} (conf: {round(conf, 2)})")
42
-
43
- # Save fallback if no match later
44
  if cleaned and cleaned.replace(".", "").isdigit() and not fallback_weight:
45
  fallback_weight = cleaned
46
  fallback_conf = conf
47
 
48
- # Match proper weight format: 75.02, 97.2, 105
49
  if cleaned.count(".") <= 1 and re.fullmatch(r"\d{2,4}(\.\d{1,3})?", cleaned):
50
  weight_candidates.append((cleaned, conf))
51
 
52
- # Choose best candidate
53
  if weight_candidates:
54
  best_weight, best_conf = sorted(weight_candidates, key=lambda x: -x[1])[0]
55
  elif fallback_weight:
56
  best_weight, best_conf = fallback_weight, fallback_conf
57
  else:
58
- return "Not detected", 0.0, "\n".join(raw_texts)
59
 
60
- # Strip unnecessary leading zeros
61
  if "." in best_weight:
62
  int_part, dec_part = best_weight.split(".")
63
  int_part = int_part.lstrip("0") or "0"
@@ -65,7 +54,7 @@ def extract_weight_from_image(pil_img):
65
  else:
66
  best_weight = best_weight.lstrip("0") or "0"
67
 
68
- return best_weight, round(best_conf * 100, 2), "\n".join(raw_texts)
69
 
70
  except Exception as e:
71
- return f"Error: {str(e)}", 0.0, "OCR failed"
 
3
  import cv2
4
  import re
5
 
 
6
  reader = easyocr.Reader(['en'], gpu=False)
7
 
8
  def extract_weight_from_image(pil_img):
9
  try:
10
  img = np.array(pil_img)
11
 
12
+ # Resize large image if needed
13
  max_dim = 1000
14
  height, width = img.shape[:2]
15
  if max(height, width) > max_dim:
16
  scale = max_dim / max(height, width)
17
  img = cv2.resize(img, None, fx=scale, fy=scale, interpolation=cv2.INTER_AREA)
18
 
19
+ # OCR
20
  results = reader.readtext(img)
 
21
 
 
22
  weight_candidates = []
23
  fallback_weight = None
24
  fallback_conf = 0.0
25
 
26
+ for box, (text, conf) in results: # ✅ Correct unpacking
 
27
  cleaned = text.lower().strip()
 
 
28
  cleaned = cleaned.replace(",", ".")
29
  cleaned = cleaned.replace("o", "0").replace("O", "0")
30
  cleaned = cleaned.replace("s", "5").replace("S", "5")
 
32
  cleaned = cleaned.replace("kg", "").replace("kgs", "")
33
  cleaned = re.sub(r"[^0-9\.]", "", cleaned)
34
 
 
 
 
35
  if cleaned and cleaned.replace(".", "").isdigit() and not fallback_weight:
36
  fallback_weight = cleaned
37
  fallback_conf = conf
38
 
 
39
  if cleaned.count(".") <= 1 and re.fullmatch(r"\d{2,4}(\.\d{1,3})?", cleaned):
40
  weight_candidates.append((cleaned, conf))
41
 
 
42
  if weight_candidates:
43
  best_weight, best_conf = sorted(weight_candidates, key=lambda x: -x[1])[0]
44
  elif fallback_weight:
45
  best_weight, best_conf = fallback_weight, fallback_conf
46
  else:
47
+ return "Not detected", 0.0
48
 
49
+ # Normalize
50
  if "." in best_weight:
51
  int_part, dec_part = best_weight.split(".")
52
  int_part = int_part.lstrip("0") or "0"
 
54
  else:
55
  best_weight = best_weight.lstrip("0") or "0"
56
 
57
+ return best_weight, round(best_conf * 100, 2)
58
 
59
  except Exception as e:
60
+ return f"Error: {str(e)}", 0.0